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Abstract

An electrically permeable interface crack with a frictionless contact zone at the right crack tip between two semi-

infinite piezoelectric spaces under the action of a remote electromechanical loading and a temperature flux is considered.

Assuming that all fields are independent on the coordinate x2 co-directed with the crack front, the stresses, the electrical
and the temperature fluxes as well as the derivatives of the jumps of the displacements, the electrical potential and the

temperature at the interface are presented via a set of analytic functions in the (x1; x3)-plane with a cut along the crack.
Due to this representation firstly an auxiliary problem concerning the direction of the heat flux permitting a transition

from a perfect thermal contact to a separation has been solved for a piezoelectric bimaterial. Besides, an inhomo-

geneous combined Dirichlet–Riemann boundary value problem has been formulated and solved exactly for the above

mentioned interface crack. Stress and electrical displacements intensity factors are found in a clear analytical form

which is especially easier for a small contact zone length. A simple equation and a closed form analytical formula for the

determination of the real contact zone length have been derived and compared with the associated equation of the

classical (oscillating) interface crack model defining the zone of crack faces interpenetration. For a numerical illus-

tration of the obtained results a bimaterial cadmium selenium/glass has been used, and the influence of the heat flux

upon the contact zone length and the associated stress intensity factor has been shown.
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1. Introduction

In the last years piezoelectric bimaterials are widely used in different devices working under a high-

temperature environment. However, piezoceramic bimaterials often contain various microdefects and
particularly interface cracks. Such cracks are the most dangerous kind of defects especially under an es-

sential temperature field. The problem of an interface crack in a piezoelectric bimaterial is rather com-

plicated under pure electromechanical loading even and there are only several publications related to this

subject. The consideration of a temperature field in addition to the electromechanical loading leads to an

essential enlargement of the associated mathematical model and therefore the number of results obtained

till now do not correspond to the importance of the problem in question.

An interface crack in an infinite piezoelectric bimaterial under the action of a remote temperature flux

has been analytically investigated in the paper by Shen and Kuang (1998), where the representations of
Lekhnitskii (1963), Eshelby et al. (1953) and Stroh (1958) extended for the piezoelectric case by Barnett and

Lothe (1975) have been used. Thereby an electrically impermeable crack has been assumed in this paper.

Later a similar problem for an electrically permeable interface crack has been considered in the paper by

Gao and Wang (2001), where also as in the paper by Shen and Kuang (1998) the classical interface crack

model has been used. The solutions obtained in the frame of this model possesses the oscillating singu-

larities at the crack tips which was found by Williams (1959). Nevertheless, for small zone lengths of

overlapping of crack faces this solution is rather useful for an interface crack investigation because for such

cases the required fracture mechanical parameters can be accurately defined by this solution. However, the
existence of an essential shear loading and a temperature field lead in certain cases to the appearance of a

long contact zone of the interface crack faces. In such cases the approach based upon the initial assumption

concerning the existence of a contact zone (Comninou, 1977) should be used.

A penny-shaped interface crack with a contact region between two isotropic materials under a ther-

momechanical loading has been investigated by Martin-Moran et al. (1983) and by Barber and Comninou

(1983) by means of the method of singular integral equations. The thermal conditions in the zone of the

mechanical contact of the crack faces in particular have been investigated in these papers, and important

conclusions concerning the formulation of these conditions depending on the direction of the heat flux have
been developed. An interface crack with a contact zone in an anisotropic bimaterial under thermomecha-

nical loading has been analytically studied by Herrmann and Loboda (2001), where a method similar to the

approach of the present paper has been developed. A thermopiezoelectric bimaterial with an interface crack

under the assumption of a contact zone model has been investigated by Qin and Mai (1999) by means of

Lekhnitskii–Eshelby–Stroh formalism. The method of singular integral equations has been used in this

paper, and the crack faces including the contact zones were assumed to be thermally and electrically

insulated.

In the present investigation an exact analytical solution for a crack with a contact zone between two
piezoelectric semi-infinite spaces under a remote electromechanical loading and a temperature flux has been

found. A transcendental equation and rather simple formula for the determination of the contact zone

length as well as closed formulas for the associated stress and electrical intensity factors have been found. In

this part of the paper the attention is focused on the case of an electrically permeable crack, while the

electrically impermeable will be considered in Part II of this paper.
2. Basic relations for a thermopiezoelectric solid

For a stationary process in the absence of body forces and free charges the constitutive relations for a
linear piezothermoelectric material can be presented according to Mindlin (1974) in the form



K.P. Herrmann, V.V. Loboda / International Journal of Solids and Structures 40 (2003) 4191–4217 4193
PiJ ¼ EiJKlVK;l � biJ T ; PiJ ;i ¼ 0 ð1Þ

qi ¼ �kijT;j; qi;i ¼ 0 ð2Þ

where
VK ¼ uk; K ¼ 1; 2; 3
u; K ¼ 4

�
ð3Þ

PiJ ¼
rij; i; J ¼ 1; 2; 3
Di; i ¼ 1; 2; 3; J ¼ 4

�
ð4Þ
and
EiJKl ¼

cijkl; J ;K ¼ 1; 2; 3
elij; J ¼ 1; 2; 3; K ¼ 4

eikl; K ¼ 1; 2; 3; J ¼ 4

�eil; J ¼ K ¼ 4

8>><
>>: ð5Þ
In the relations (1)–(5) uk, u, rij, Di, qi are the elastic displacements, electric potential, stresses, electric
displacements, and heat flux components, respectively, and T is the temperature. Furthermore, cijkl, elij, eij
and kij are the elastic moduli, piezoelectric constants, dielectric constants and the heat conduction coeffi-
cients, respectively. The values biJ are the stress–temperature coefficients for J ¼ 1, 2, 3 and bi4 present the
pyroelectric constants. Small subscripts in (1)–(5) and afterwards are always ranging from 1 to 3, capital

subscripts are ranging from 1 to 4 and summation on repeated Latin suffixes has been used.
Assuming all fields are independent on the coordinate x2 and using the method developed by Clements

(1983) for thermoelastic problems, one obtains the following general solution to Eq. (2)
T ¼ v0ðztÞ þ v0ð�zztÞ; qi ¼ �ðki1 þ ski2Þv00ðztÞ � ðki1 þ �sski2Þv00ð�zztÞ ð6Þ

where zt ¼ x1 þ sx3, the prime ð0Þ denotes differentiation with respect to the argument, the overbar stands
for the complex conjugate and s is a root with a positive imaginary part of the equation
k33s
2 þ ðk13 þ k31Þs þ k11 ¼ 0 ð7Þ
A general solution of Eq. (1) by using the Lekhnitskii–Eshelby–Stroh representation and its application to

piezoelectric (Barnett and Lothe, 1975) and thermopiezoelectric (Shen and Kuang, 1998; Qin and Mai,

1999) materials can be presented in the form
V ¼ AfðzÞ þ cvðztÞ þ A�ffð�zzÞ þ �ccvð�zztÞ ð8Þ

t ¼ Bf 0ðzÞ þ dv0ðztÞ þ B�ff 0ð�zzÞ þ �ddv0ð�zztÞ ð9Þ

where zJ ¼ x1 þ pJx3, V ¼ ½u1; u2; u3;u�T, t ¼ ½r31; r32; r33;D3�T (the superscript �T� stands for the transposed
matrix), A ¼ ½A1;A2;A3;A4�; pJ and AJ ¼ ½a1J ; a2J ; a3J ; a4J �T are an eigenvalue and an eigenvector, respec-
tively, of the system
Q
�

þ pJ ðRþ RTÞ þ p2JT
�
AJ ¼ 0 ð10Þ
with the elements of the 4	 4 matrices Q, R and T defined as QJK ¼ E1JK1, RJK ¼ E1JK3, TJK ¼ E3JK3. The
vector c is defined from the equation
Q
�

þ sðRþ RTÞ þ s2T
�
c ¼ N1 þ sN2 ð11Þ
with Nm ¼ ½bm1; bm2; bm3; bm4�
T
(m ¼ 1, 2) and the 4	 4 matrix B and the vector d can be found by the

formulas
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B ¼ RTAþ TAP; d ¼ ðRT þ sTÞc�N2 ð12Þ

with P ¼ diag½p1; p2; p3; p3�.
It is worth to mention that vðztÞ from the formula (6) is an arbitrary analytic function and fðzÞ in the

formulas (8) and (9) is an arbitrary analytic vector function with four components which should be

determined later.
3. A bimaterial thermopiezoelectric space with a mixed boundary conditions at the interface

A bimaterial composed of two different piezoelectric semi-infinite spaces x3 > 0 and x3 < 0 with thermo-
mechanical properties defined by the matrices Eð1Þ

iJKl, kð1Þ
ij , bð1Þ

iJ and Eð2Þ
iJKl, kð2Þ

ij , bð2Þ
iJ , respectively, is con-

sidered (Fig. 1). We assume, that the component q3 of the temperature flux vector and the vector t are
continuous across the whole bimaterial interface and the parts Lt ¼ fð�1;d1Þ [ ða1;d2Þ [ 
 
 
 ðdn;1Þg and
L¼ fð�1; c1Þ [ ðb1;c2Þ [ 
 
 
 ðbn;1Þg (½di;ai� � ½ci;bi�) of the interface �1< x1 <1, x3 ¼ 0 are thermally
and electromechanically bounded, respectively, i.e. the boundary conditions at the interface x3 ¼ 0 are the
following
qð1Þ3 ¼ qð2Þ3 ; tð1Þðx1; 0Þ ¼ tð2Þðx1; 0Þ for x1 2 ð�1;1Þ ð13Þ

T ð1Þ ¼ T ð2Þ for x1 2 Lt; Vð1Þðx1; 0Þ ¼ Vð2Þðx1; 0Þ for x1 2 L ð14Þ

Presenting (6)2 for i ¼ 3 in the form
q3 ¼ �ikv00ðztÞ þ ikv00ð�zztÞ ð15Þ

with k ¼ k33ðs � �ssÞ=ð2iÞ the heat flux continuity condition gives
ikð1Þv00
1ðxþ1 Þ þ ikð2Þv00

2ðxþ1 Þ ¼ ikð2Þv00
2ðx�1 Þ þ ikð1Þv00

1ðx�1 Þ ð16Þ

where the signs ‘‘+’’ and ‘‘)’’ denotes the upper and lower parts of the interface, i ¼

ffiffiffiffiffiffiffi
�1

p
, and kð1Þ, v1ðztÞ

and kð2Þ, v2ðztÞ are related to the upper and lower half-spaces, respectively. Introducing a new function
v�ðztÞ ¼ ikð1Þv00
1ðztÞ þ ikð2Þv00

2ðztÞ; for x3 > 0
ikð2Þv00

2ðztÞ þ ikð1Þv00
1ðztÞ; for x3 < 0

�
ð17Þ
and using Eq. (16) one can see that the function v�ðzÞ is analytic in the whole plane. Assuming the heat flux
disappears at infinity and by using Liouville�s theorem one obtains that v�ðzÞ � 0 and the formula (17) leads

to
c1 b1 c2 cnb2 bn. . . .

x3

x1

d1 a1 d2 dna2 an

)1()1()1( ,, ijijijklE βλ

)2()2()2( ,, ijijijklE βλ

Fig. 1. Bimaterial thermopiezoelectric plane with mixed boundary conditions.
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v00
2ðztÞ ¼ � kð1Þ

kð2Þ
v00
1ðztÞ for x3 > 0; v00

1ðztÞ ¼ � kð2Þ

kð1Þ
v00
2ðztÞ for x3 < 0 ð18Þ
Further, by introducing the derivative of the temperature jump across the bimaterial interface
½T 0ðx1Þ� ¼ T 0þ
1 ðx1; 0Þ � T 0�

2 ðx1; 0Þ ð19Þ
and by using Eqs. (6)1, (18) leads to
½T 0ðx1Þ� ¼ h00þðx1Þ � h00�ðx1Þ ð20aÞ

where
hðztÞ ¼ ð1þ kð1Þ=kð2ÞÞv1ðztÞ; for x3 > 0

ð1þ kð2Þ=kð1ÞÞv2ðztÞ; for x3 < 0

�
ð20bÞ
and the formula (15) written for the upper part of the interface as well as Eqs. (18) and (20b) lead to
qð1Þ2 ðx1; 0Þ ¼ �ik0fh00þðx1Þ þ h00�ðx1Þg ð21aÞ

with
k0 ¼
kð1Þkð2Þ

kð1Þ þ kð2Þ
ð21bÞ
It is clearly seen from Eqs. (14)1, (19) and (20a) that the function hðztÞ is analytic in the whole plane with a
cut along ð�1;1Þ n Lt.
Using an approach developed for a thermoelastic case by Clements (1983) and the relations (9) and (13)2

the following expressions at the interface are obtained
½V0ðx1Þ� ¼ Wþðx1Þ �W�ðx1Þ ð22Þ

tð1Þðx1; 0Þ ¼ GWþðx1Þ �GW�ðx1Þ � gðx1Þ ð23Þ

where
½V0ðx1Þ� ¼ V0ð1Þðx1; 0Þ � V0ð2Þðx1; 0Þ ð24Þ

G ¼ Bð1ÞD�1, D ¼ Að1Þ � LBð1Þ, L ¼ Að2ÞðBð2ÞÞ�1, W�ðx1Þ ¼ Wðx1 � 0Þ and the vector-function gðx1Þ ¼
½g1ðx1Þ; g2ðx1Þ; g3ðx1Þ; g4ðx1Þ�T can be presented in the form
gðx1Þ ¼ hh0þðx1Þ � �hhh0�ðx1Þ ð25Þ

with
h ¼ 1

kð1Þ þ kð2Þ
f�GðLd� � c�Þ � kð2Þdð1Þg ð26aÞ
and
c� ¼ kð2Þcð1Þ þ kð1Þ�ccð2Þ; d� ¼ kð2Þdð1Þ þ kð1Þ�ddð2Þ ð26bÞ

It is worth to note that for the boundary conditions (14) the vector function WðzÞ ¼ ½W1ðzÞ;W2ðzÞ;
W3ðzÞ;W3ðzÞ�T is analytic in the whole plane with a cut along ð�1;1Þ n L. We note as well that the matrix G
and the vector functionWðzÞ are related to the matrix H and the vector function W0ðzÞ of the papers by Suo
et al. (1992) and Shen and Kuang (1998) as iG�1 ¼ H,WðzÞ ¼ �iHW0ðzÞ, respectively, and the relations (22)
and (23) can be written without any difficulties in terms of the matrix H and the vector function W0ðzÞ from
these papers. But for the formulation of the problems considered in the following chapters the presentation

(22) and (23) appears to be more convenient than the form used in the mentioned papers. On the base of the



4196 K.P. Herrmann, V.V. Loboda / International Journal of Solids and Structures 40 (2003) 4191–4217
relations (22) and (23) different problems of linear relationship can be formulated for thermopiezoelectric

bimaterials with cuts at the material interfaces.

The attention is focused in the following on thermopiezoelectric materials of the symmetry class 6mm

(Parton and Kudryavtsev, 1988) poled in the direction x3 which have an essential practical significance as
so-called poled ceramics. In this case for all fields which are independent of the coordinate x2 the dis-
placement V2 of the vector-function V of Eq. (3) decouples in the (x1; x3)-plane from the components

(V1; V3; V4). Because of the simplicity of the V2-determination our attention will be focused on the plane
problem for the components (V1; V3; V4). In this case similarly to the contracted notations in the anisotropic
elasticity (Sokolnikoff, 1956) the following relations for the elements of the matrix E related to the (x1; x3)-
plane can be introduced: E1111 ¼ c11, E1133 ¼ c13, E3333 ¼ c33, E1313 ¼ c44, E1143 ¼ e31, E3343 ¼ e33, E1341 ¼ e15,
E1441 ¼ �e11, E3443 ¼ �e33. Moreover, the matrix G without the second row and column and the vector h

without the second element have the following structure (Herrmann and Loboda, 2000)
G ¼
G11 G13 G14
G31 G33 G34
G41 G43 G44

2
4

3
5 ¼

ig11 g13 g14
g31 ig33 ig34
g41 ig43 ig44

2
4

3
5; h ¼

ih1
h3
h4

8<
:

9=
; ð27Þ
where all gij and hi are real.
4. Formulation of the problem and the thermal solution

Consider now the same bimaterial as in the previous chapter and assume that a tunnel interface crack is

situated in the region c6 x16 b, x3 ¼ 0. The half-spaces are loaded at infinity with uniform stresses rðmÞ
33 ¼ r,

rðmÞ
13 ¼ s and rðmÞ

11 ¼ r1
xm as well as with uniform electric displacements D

ðmÞ
3 ¼ d, DðmÞ

1 ¼ D1
xm which satisfy the

continuity conditions at the interface. Besides a uniform temperature flux q0 in the x3-direction is imposed
at infinity. Because the load and the temperature flux do not depend on the coordinate x2 the displacements
uðmÞk are independent on x2 and for the matrix G in the form (27) a two-dimensional problem in the (x1; x3)-
plane can be considered (Fig. 2).

It will be assumed that the crack surfaces are traction-free for x1 2 ½c; a� ¼ L1 whilst they should be in
frictionless contact for x1 2 ða; bÞ ¼ L2, and the position of the point a is arbitrarily chosen for the time
c a bL1 L2

σ

σ

τ

τ

τ

σ xx1
∞σ xx1

∞

σ xx2
∞

σ xx2
∞

x3

x1

)2()2()2( ,, iJijiJKlE βλ

q0

q0

)1()1()1( ,, iJijiJKlE βλ

d

d

∞
1xD 1xD

∞
2xD ∞

2xD

∞

τ

Fig. 2. Thermopiezoelectric plane with an interface crack under thermoelectromechanical loading.
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being. This formulation is valid for the case when a longer contact zone arises at the right crack tip. In this

case according to the results of Dundurs and Gautesen (1988) the oscillating singularity at the left crack tip

will not significantly influence the stress and strain fields at the right crack tip. If the load calls a longer

contact zone at the left crack tip, then it can be taken into account by a simple transposition of the half-
spaces. The open part of the crack is thermally insulated, whereas ideal thermal contact takes place on the

other part of the interface, and the electrical potential is assumed to be continues across the whole interface.

Taking into account the last assumption and combining each group of Eqs. (22) and (23) in the same

way as it has been performed by Herrmann and Loboda (2000) one arrives at the following presentations:
rð1Þ
33 ðx1; 0Þ þ imjr

ð1Þ
13 ðx1; 0Þ ¼ #j½F þ

j ðx1Þ þ cjF
�
j ðx1Þ� þ r0 � g0jðx1Þ; ðj ¼ 1; 3Þ ð28Þ

½u01ðx1Þ� þ iSj½u03ðx1Þ� ¼ F þ
j ðx1Þ � F �

j ðx1Þ ð29Þ
where
FjðzÞ ¼ W1ðzÞ þ iSjW3ðzÞ; g0jðx1Þ ¼ g3ðx1Þ þ imjg1ðx1Þ ð30aÞ

cj ¼ �ðg31 þ mjg11Þ=#j; Sj ¼
g33 þ mjg13
g31 � mjg11

; #j ¼ g31 � mjg11; j ¼ 1; 3 ð30bÞ

m1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� g31g33
g11g13

r

and
r0 ¼ �g34D�1
1 ðg43r � g33dÞ; D1 ¼ g33g44 � g43g34 ð30cÞ
It follows from the first equation of (30a) that the functions FjðzÞ (j ¼ 1, 3) under the boundary conditions

(14)2 are analytic in the whole plane with a cut along ð�1;1Þ n L. Besides, according to Herrmann and
Loboda (2000) the function W4ðzÞ is analytic in the whole plane, and this function can be excluded from the

following consideration by means of incorporating the constant r0 in Eq. (28).
Because of the linearity the formulated problem can be considered separately for an electromechanical

and a thermal loading, respectively. Taking into account that the problem in question under a pure elec-

tromechanical loading has been already studied in detail by Herrmann and Loboda (2000) in the following

thermal loading only will be considered assuming r ¼ s ¼ r1
xxm ¼ 0 and d ¼ D1

xm ¼ 0 for the time being.
Moreover, the solution of the obtained problem can be constructed as the sum of two parts––a state of

uniform heat flux q0 and a perturbed temperature field caused by the insulated crack faces that tends to zero
at a large distance from the crack. Because the homogeneous temperature field is out of our interest we are

considering the perturbed state with the continuity and boundary conditions at the interface in the fol-

lowing form:
½T � ¼ 0; ½q3� ¼ 0 for x1 2 Lt ¼ ð�1;1Þ n ðc; aÞ ð31aÞ

q�3 ¼ �q0 for x1 2 L1 ð31bÞ

½Vðx1; 0Þ� ¼ 0; ½tðx1; 0Þ� ¼ 0 for x1 2 L ð32aÞ

rðmÞ
13 ðx1; 0Þ ¼ 0; rðmÞ

33 ðx1; 0Þ ¼ 0; ½uðx1; 0Þ� ¼ 0; ½D3ðx1; 0Þ� ¼ 0 for x1 2 L1 ð32bÞ

½u3ðx1; 0Þ� ¼ 0; ½uðx1; 0Þ� ¼ 0; rðmÞ
13 ðx1; 0Þ ¼ 0; ½r33ðx1; 0Þ� ¼ 0;

½D3ðx1; 0Þ� ¼ 0 for x1 2 L2 ð32cÞ
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This problem is a particular case of the problem considered in the previous section for n ¼ 1, c1 ¼ d1 ¼ c,
a1 ¼ a, b1 ¼ b and therefore the presentations (20a), (21a) and (22), (23) obtained there hold true in this
case.

Satisfying the boundary condition (31b) by using Eq. (21a) the following Hilbert problem arises
h00þðx1Þ þ h00�ðx1Þ ¼ � iq0
k0

for x1 2 L1 ð33Þ
The solution of this problem disappearing at infinity can be presented in the form of Muskhelishvili (1977)
h00ðzÞ ¼ � iq0
k0

X0ðzÞ
2pi

Z
L1

dt
Xþ
0 ðtÞðt � zÞ ð34aÞ
with
X0ðzÞ ¼ ðz� cÞ�1=2ðz� aÞ�1=2 ð34bÞ
Evaluation of the integral (34a) leads to the formula
h00ðzÞ ¼ iq0
2k0

z
�h

� cþ a
2

�
X0ðzÞ � 1

i
ð35Þ
which gives after integration the following expression
h0ðzÞ ¼ iq0
2k0

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� cÞðz� aÞ

p
� ~zz� ð36Þ
where ~zz ¼ z� c0 and the integration constant c0 ¼ ðcþ aÞ=2 is introduced to satisfy the condition h0ðzÞ ! 0

for z ! 1.
By means of the obtained solution and the formulas (20a) and (21a) the temperature jump across the

material interface for c < x1 < a and the temperature flux for x1 > a can be presented in the following form:
½T ðx1Þ� ¼ � q0
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � cÞða� x1Þ

p
; qð1Þ3 ðx1; 0Þ ¼ q0

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � cÞðx1 � aÞ

p
 

� 1
!

ð37Þ
The last two expressions completely define the temperature jump and the heat flux in the bimaterial for any

position of point a.
5. On an admissible direction of the heat flux

For the case of isotropic materials the problem of a possible transition from a perfect thermal contact of

two isotropic bodies to their separation has been discussed in the paper by Martin-Moran et al. (1983)
where it was in particular indicated that such a possibility essentially depends on the material properties

and on the direction of the heat flux. To the authors knowledge a similar analysis has not been performed

yet neither for an anisotropic, nor for a piezoelectric bimaterial. Therefore to analyse the problem (31) and

(32) correctly let us consider now an auxiliary problem concerning a possible transition from a perfect

thermal contact of two piezoelectric bodies to their separation.

Consider the same piezoelectric half-spaces and the same loading as in Section 4 and assume that r < 0

and s ¼ 0, i.e. the half space are compressed to each other with a stress rðmÞ
33 ¼ r at infinity, and the thermal

and the electrical fluxes are prescribed at infinity as well. The contact between the half-spaces is assumed to
be frictionless and electrically permeable. A soft thermal insulator which does not call stresses is located in

the region jx1j6 a of the interface and the remaining part of the interface is in a perfect thermal contact.
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Because the load does not depend on the coordinate x2 the plane strain problem in the (x1; x3)-plane can be
considered and the interface conditions for the perturbed thermal and the associated mechanical problems

can be presented in the form
for jx1j6 a : q�3 ¼ q0; rðmÞ
13 ðx1; 0Þ ¼ 0; rðmÞ

33 ðx1; 0Þ ¼ 0; ½uðx1; 0Þ� ¼ 0; ½D3ðx1; 0Þ� ¼ 0 ð38Þ

for jx1j > a : ½T � ¼ 0; ½q3� ¼ 0; ½u3ðx1; 0Þ� ¼ 0; ½uðx1; 0Þ� ¼ 0;

rðmÞ
13 ðx1; 0Þ ¼ 0; ½r33ðx1; 0Þ� ¼ 0; ½D3ðx1; 0Þ� ¼ 0 ð39Þ
Thus, we assume that in the interval jx1j6 a a crack with thermally insulated and mechanically free surfaces
appears and that the other part of the material interface is in mechanically frictionless and thermally perfect

contact. The possibility of such a formulation, providing an electrically permeable interface exists for

jx1j < 1, is discussed in this paragraph.
Introducing the vectors S ¼ ½rð1Þ

13 ; ½u03�; ½u0��T and P ¼ ½½u01�; r
ð1Þ
33 ;D

ð1Þ
3 �T the following relations can be found

by means of the formulas (22) and (23)
Sðx1Þ ¼ MWþðx1Þ �MW�ðx1Þ þm�h0þðx1Þ � �mm�h0�ðx1Þ ð40Þ

Pðx1Þ ¼ NWþðx1Þ �NW�ðx1Þ þ n�h0þðx1Þ � �nn�h0�ðx1Þ ð41Þ

where the matrices M and N and the vectors m� and n� have the following structure
M ¼

G11 G13 G14

0 1 0

0 0 1

2
664

3
775; N ¼

1 0 0

G31 G33 G34

G41 G43 G44

2
664

3
775; m� ¼

�h1

0

0

8>><
>>:

9>>=
>>;; n� ¼

0

�h3

�h4

8>><
>>:

9>>=
>>; ð42Þ
Further, by introducing a new vector-function WðzÞ ¼ ½W1ðzÞ;W2ðzÞ;W3ðzÞ�T by the following formula
WðzÞ ¼
MWðzÞ þm�h0ðzÞ; for x3 > 0

MWðzÞ þ �mm�h0ðzÞ; for x3 < 0

(
ð43Þ
one can get
Sðx1Þ ¼ Wþðx1Þ � W�ðx1Þ ð44aÞ

Pðx1Þ ¼ QWþðx1Þ �QW�ðx1Þ � eh0þðx1Þ þ �eeh0�ðx1Þ ð44bÞ

with Q ¼ NM�1 and e ¼ Qm� � n�. It follows from the relation (44a) that under the boundary conditions

(39) the vector function WðzÞ is analytic in the whole plane with a cut along (jx1j6 a; x3 ¼ 0).

The numerical analysis showed that for all analyzed combinations of materials the matrix Q is pure

imaginary and the vector e is real, and therefore Q ¼ �Q, �ee ¼ e. It means that the relation (44b) can be

written in the form
Pðx1Þ ¼ QfWþðx1Þ þ W�ðx1Þg � efh0þðx1Þ � h0�ðx1Þg ð45Þ
Moreover, it follows from the relation (44a) and the equations rð1Þ
13 ðx1; 0Þ ¼ 0, ½uðx1; 0Þ� ¼ 0 for jx1j6 a that

the functions W1ðzÞ and W3ðzÞ are analytic in the whole plane and by use of the conditions at infinity one
easily concludes that W1ðzÞ � C1 and W3ðzÞ � C3 (C1;C3 are arbitrary constants). The thermal solution in
this case can be presented by the formulas (35)–(37) with c ¼ �a and the remaining boundary condition
from Eq. (38) leads to the following equation
P2ðx1Þ ¼ 0 for jx1j6 a ð46Þ
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which involves the function W2ðx1Þ only. Because the condition ½u01ðx1Þ�jx1!1 ¼ 0 is usually satisfied by

means of an appropriate prescription of the stresses rðmÞ
11 ¼ r1

xm at infinity one can choose the arbitrary

constant C1 ¼ 0. Then the condition at infinity can be written by means of Eq. (45) as follows
2
Q22 Q23
Q32 Q33

� �
W2ðzÞ
C3

� �
z!1

¼ r
d

� �
ð47aÞ
and leads to the following formulas
W2ðzÞjz!1 ¼ 0:5D�1
0 ðQ33r � Q23dÞ ð47bÞ

C3 ¼ �0:5D�1
0 ðQ32r � Q22dÞ with D0 ¼ Q22Q33 � Q23Q32 ð47cÞ
By use of the formulas (36) and (45), Eq. (46) can be written in the form
Wþ
3 ðx1Þ þ W�

3 ðx1Þ ¼
e2q0

k0 ImðQ22Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � a2

q
� 2Q23

Q22
C3 for jx1j6 a ð48aÞ
The solution of the Riemann problem (48) under the condition (47b) at infinity can be written in a form

similar to Eq. (34a) (see Muskhelishvili (1977) as well), which after an integration gives
W3ðzÞ ¼
e2q0

2pik0 ImðQ22Þ
2azffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
 

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
ln
z� a
zþ a

!
þ r
Q22

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p � 2Q23
Q22

C3 ð48bÞ
The normal stress and the derivative of the normal displacement jump at the interface by use of the last

formula and Eqs. (44a) and (45), read then as follows
rð1Þ
33 ðx1; 0Þ ¼

e2q0
pk0

2ax1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � a2

p
 

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � a2

q
ln
x1 � a
x1 þ a

!
þ rx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � a2
p for x1 > a ð49aÞ

½u03ðx1Þ� ¼ ½ImðQ22Þ��1
e2q0
pk0

 (
� 2ax1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x21
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
ln
a� x1
aþ x1

!
� rx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x21
p

)
for jx1j < a ð49bÞ
It is worth to note that neither the normal stress nor the derivative of the normal displacement jump depend

on the electrical flux d.
The formulas (49) are valid for any values of q0 and r, respectively, and it can be clearly seen that

rð1Þ
33 ðx1; 0Þ and ½u03ðx1Þ� posses a square root singularity at the edges of the zone of thermal insulation.
However, the most important situation concerning the investigation of the contact zone model for an

interface crack is related to the case when the singularities in Eqs. (49) are absent. This situation can

take place if the following relation between q0 and r is valid
r ¼ � 2ae2q0
pk0

ð50Þ
In this case the formulas (49) take the following form
rð1Þ
33 ðx1; 0Þ ¼

e2q0
pk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 � a2

q
ln
x1 � a
x1 þ a

for x1 > a ð51aÞ

½u03ðx1Þ� ¼ ½ImðQ22Þ��1
e2q0
pk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
ln
a� x1
aþ x1

for jx1j < a ð51bÞ
Because the logarithmic functions in (51a) and in (51b) are negative for points x1 situated in the vicinity of
point a and according to the numerical calculation the inequality ImðQ22Þ > 0 is valid, it follows that

rð1Þ
33 ðx1; 0Þ and ½u03ðx1Þ� are negative in the vicinity of point a (whereas ½u3ðx1Þ� is positive) if and only if
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e2q0 > 0 ð52Þ

holds true. The last inequality defines the direction of the temperature flux q0 for which a transition from a
perfect thermal contact of two piezoelectric bodies to their separation is possible. In spite of a particular

problem is considered in this paragraph, nevertheless the inequality (52) can be treated as a general con-

dition because the relations (51) define the asymptotic behavior of rð1Þ
33 ðx1; 0Þ and ½u03ðx1Þ�, respectively, at

the transition point a.
In terms of the matrix G and the vector h from Eq. (27) the inequality (52) can be written in the following

form
g11h3 � g31h1
g11

q0 > 0 ð53Þ
and for the case of two isotropic materials it is reduced to the well known inequality presented by Martin-

Moran et al. (1983)
ðdð1Þ � dð2ÞÞq0 > 0 ð54Þ

where dð1Þ and dð2Þ are the distortivities of the upper and lower materials, respectively. If the inequality (52) is

not valid then the conditions (39) cannot be used and an imperfect thermal contact (Barber and Comninou,
1983) has to be considered. However, the consideration of an imperfect thermal contact is out of the subject

of the present paper.
6. The classical interface crack model

Now we return to the consideration of the electromechanical characteristics of the problem (31) and (32).

However, for the sake of comparison the classical interface crack model should be considered briefly when

the crack is assumed to be completely opened, i.e. the contact zone L2 disappears and the point a coincides
with b. It is worth to remind as well that the perturbed thermal problem with zero mechanical loading at

infinity is considered for the time being.
Satisfying the rest of the boundary conditions (32b) by means of Eq. (28) one arrives at the following

Hilbert problems
F þ
j ðx1Þ þ cjF

�
j ðx1Þ ¼ g0jðx1Þ=#j for x1 2 ðc; aÞ; j ¼ 1; 3 ð55Þ
Because of the properties expressed by the formulas (30b) the problem (55) for j ¼ 3 can be easily obtained

from the same problem for j ¼ 1 and therefore the problem (55) can be considered for j ¼ 1 only. Thus in

the following the index j will be dropped out and Eq. (55) can be written as
F þðx1Þ þ cF �ðx1Þ ¼
q0
k0#

u1ðx1Þ for x1 2 ðc; aÞ ð56aÞ
where according to Eq. (27) for the ceramics of the class 6mm holds true
u1ðx1Þ ¼ imh1~xx1 þ ih3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � cÞðx1 � aÞ

p
; ~xx1 ¼ x1 � c0 ð56bÞ
The solution of the problem (56a) can be presented in the form (Muskhelishvili, 1977)
F ðzÞ ¼ q0
k0#

X ðzÞ
2pi

Z
L1

u1ðtÞdt
XþðtÞðt � zÞ þ X ðzÞP ðzÞ ð57aÞ
where
X ðzÞ ¼ ðz� cÞ�1=2þieðz� aÞ�1=2�ie ð57bÞ

e ¼ ln c=2p, P ðzÞ ¼ C1zþ C0 and C0, C1 are arbitrary coefficients.
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Using the formula (A.7) with a ¼ c, b ¼ a and taking into account that for f ðx1Þ ¼ x1=Xþðx1Þ follows
k ¼ �c and for f ðx1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � cÞðx1 � aÞ

p
=Xþðx1Þ k ¼ c holds true the following expression for F ðzÞ are

obtained
F ðzÞ ¼ ih1q0
k0#ð1þ cÞ f~zz� X ðzÞ½d11z2 þ d12zþ d13�g

þ ih3q0
k0#ð1� cÞ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� cÞðz� aÞ

p
� X ðzÞ½d21z2 þ d22zþ d23�g þ X ðzÞPðzÞ ð58aÞ
where d11 ¼ d21 ¼ 1, d12 ¼ d22 ¼ �ieða� cÞ � ðaþ cÞ,
d13 ¼ 0:25ðaþ cÞ2 � 0:125ða� cÞ2ð1þ 4e2Þ þ 0:5ieða2 � c2Þ; d23 ¼ d13 � 0:125ða� cÞ2 ð58bÞ
The coefficients of P ðzÞ should be determined by the condition at infinity and the condition of the single-
valuedness of the displacements which due to (29) can be written as
Z a

c
fF þðx1Þ � F �ðx1Þgdx1 ¼ 0 ð59Þ
It follows from the absence of any loading at infinity that C1 ¼ 0. Using for the consideration of the

condition (59) the approach based upon the formulas (A.1)–(A.4) with F ðzÞ instead of f ðzÞ and noting that
the part F ðzÞ without the term connected with P ðzÞ tends to 0 for large jzj as Oðz�2) one can immediately
conclude that C0 ¼ 0. The same result has been obtained by means of the direct consideration of Eqs. (58)

and (59) (for c ¼ �a) and by using the integrals (A.9).
The stresses and the jump of the displacements can be found by means of the formulas (28) and (29).

Particularly for x1 > a the stresses can be presented in the form
rð1Þ
33 ðx1; 0Þ þ imrð1Þ

13 ðx1; 0Þ ¼ ih1
q0
k0

f~xx1 � X ðx1Þ½d11x21 þ d12x1 þ d13�g

þ ih3
q0
k0

1þ c
1� c

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � cÞðx1 � aÞ

p
� X ðx1Þ½d21x21 þ d22x1 þ d23�g � g0ðx1Þ

ð60Þ
The electrical flux in this region according to Herrmann and Loboda (2000) can be calculated directly via

rð1Þ
33 ðx1; 0Þ in the form
Dð1Þ
3 ðx1; 0Þ ¼ g�133 g43½r

ð1Þ
33 ðx1; 0Þ þ g3ðx1Þ� � g4ðx1Þ ð61Þ
Introducing similarly to Rice (1988) the stress intensity factors (SIFs) by the formula
K1 þ imK2 ¼ ðx1 � aÞie
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � aÞ

p
½rð1Þ
33 ðx1; 0Þ þ imrð1Þ

13 ðx1; 0Þ�x1!aþ0 ð62Þ
and using Eq. (60) one arrives at the following expressions for the conjugating SIFs
K1 � imK2 ¼ �iðc þ 1Þ q0
k0

l
ffiffiffiffiffi
pl

p

4
ffiffiffi
2

p e�iw½ð1þ 2ieÞ2ðg1 þ g3Þ � g3� ð63Þ
where
g1 ¼ � mh1
c þ 1 ; g3 ¼

h31
c � 1 ð64Þ
w ¼ e ln l and l ¼ b� c is the crack length. The energy release rate (ERR) can by found by using the
formula (Herrmann and Loboda, 2000)
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G ¼ XðK2
1 þ m2K2

2 Þ ð65Þ
with X ¼ �½2#ð1þ cÞm��1.
Particularly for a homogeneous piezoelectric material (c ¼ 1, e ¼ 0, m ¼ �1) is valid
KI ¼ 0; KII ¼ � q0
k0

l
ffiffiffiffiffi
pl

p

4
ffiffiffi
2

p h1 ð66Þ
7. An artificial contact zone for an interface crack

If the position of the point a does not coincide with b, then an artificial contact zone shown in Fig. 2 is
considered to exist now. The contact zone for an arbitrary position of the point a will be called an artificial
one. Further, a solution of the problem (31) and (32) for an interface crack with such a zone will be found,
and the real contact zone length will be derived from this solution.

Satisfying by means of Eq. (28) with r0 ¼ 0 the boundary conditions (32b) leads to Eq. (55) which for

j ¼ 1 can be written in the form (56a). The boundary conditions (32c) by using of Eqs. (28) and (29) lead to

the following equations (the index j is dropped again on the same reason as earlier)
ImF �ðx1Þ ¼
q0
k0#

u2ðx1Þ for x1 2 L2 ð67aÞ
where
u2ðx1Þ ¼
mh1
1þ c

~xx1
h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � cÞðx1 � aÞ

p i
ð67bÞ
The relations (56) and (67) represent an inhomogeneous combined Dirichlet–Riemann boundary value

problem for the sectionally-holomorphic functions F ðzÞ. A solution of an associated homogeneous problem
with respect to Eqs. (56) and (67) was found and applied to the analysis of a rigid stamp by Nahmein and

Nuller (1986), and concerning the problem of an interface crack this solution has been developed by

Loboda (1993) and Herrmann and Loboda (1999).

The general solution of the problem (56) and (67) can be presented in the form
F ðzÞ ¼ PðzÞX1ðzÞ þ QðzÞX2ðzÞ þ F0ðzÞ ð68Þ
where P ðzÞ ¼ C1zþ C2, QðzÞ ¼ D1zþ D2 are polynomials with arbitrary real coefficients,
X1ðzÞ ¼ i eiuðzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� cÞðz� bÞ

p
and X2ðzÞ ¼ eiuðzÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� cÞðz� aÞ

p
ð69aÞ
are the particular solutions of a homogeneous problem correspondent to (56) and (67), with
uðzÞ ¼ 2e ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞðz� cÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðz� aÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞðz� bÞ

p ð69bÞ
A particular solution F0ðzÞ of the inhomogeneous problem (56) and (67) is given in the Appendix B

according to
F0ðzÞ ¼
q0
k0#

X2ðzÞ½x1ðzÞ þ x2ðzÞ� ð70Þ
where x1ðzÞ, x2ðzÞ are given by the formulas (B.3) and (B.7), respectively.
The form of the solution (68) and (70) is rather complicated and inconvenient for the determination of

the arbitrary coefficients and the following use of this solution. Therefore, the obtained solution should be
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reduced to a more clear form. First of all it should be mentioned that the functions XmðzÞ (m ¼ 1, 2) have

the following properties:

i(i) they are analytic in the whole plane except the segment [c; b];
(ii) for the upper ‘‘+’’ and the lower ‘‘)’’ sides of [c; b] they have the following behavior
Xm

X1

u

ðx1Þ ¼ Xþ
m ðx1Þ ¼ �cX�

m ðx1Þ for x1 2 ðc; aÞ ð71aÞ

with
�ðx1Þ ¼
�e�u0ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � cÞðb� x1Þ
p ; X�

2 ðx1Þ ¼
e�u0ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � cÞðx1 � aÞ
p for x1 2 ða; bÞ ð71bÞ
where
0ðx1Þ ¼ 2e tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞðb� x1Þ
ðb� cÞðx1 � aÞ

s
ðu0ðx1Þ ¼ iuðx1Þ for x1 2 ða; bÞÞ ð71cÞ
The most important part of the particular solution is the function x1ðzÞ. The integral in (B.3) defining this
function could not be evaluated in a closed form. But the most important imaginary part of x1ðzÞ which is
used in the formula (B.5) has been managed to evaluate analytically in the following way.

We present the function x1ðzÞ in the following way

x1ðzÞ ¼ mh1U1ðzÞ þ h3U2ðzÞ ð72aÞ
where
U1ðzÞ ¼
1

2pi

Z
L1

i~ttdt
Xþ
2 ðtÞðt � zÞ ; U2ðzÞ ¼

1

2pi

Z
L1

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � cÞðt � aÞ

p
dt

Xþ
2 ðtÞðt � zÞ ; ~tt ¼ t � c0 ð72bÞ
Using the properties (71b) of the function X2ðzÞ it can be seen that the function S1ðzÞ ¼ e�iuðzÞ þ eiuðzÞ is
analytic on the interval [a; b] and hence it is analytic in the whole plane except the segment [c; a]. Con-
sidering the Cauchy integral
X1ðzÞ ¼
1

2pi

Z
C

i~nn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � cÞðn � aÞ

p
S1ðnÞ

n � z
dn; ~nn ¼ n � c0 ð73Þ
where
X1ðzÞ ¼ i~zz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� cÞðz� aÞ

p
S1ðzÞ � cpzp � 
 
 
 � c0 ð74Þ
C is a contour surrounding the segment [c; a] in a clockwise direction (Fig. 3), the point z remains outside of
this contour and cp; . . . ; c0 have the same sense as in formula (A.2). Further, letting the contour C shrink

into the interval [c; a], by using that
S�1 ðtÞ ¼ ce�iuðtÞ þ c�1 eiuðtÞ; e�iuðtÞ ¼ c�0:5 e�iu
�ðtÞ for x1 2 ðc; aÞ ð75Þ
ac a b

Fig. 3. A contour C surrounding the interval (c; a) of the jumps of the function S1ðzÞ from the formula (73).
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holds true, one gets the following relation:
ImX1ðx1Þ ¼
c þ 1
p
ffiffiffi
c

p
Z a

c

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � cÞðt � aÞ

p
cosu�ðtÞ

t � x1
dt for x1 62 ðc; aÞ ð76Þ
where
u�ðx1Þ ¼ 2e ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞðx1 � cÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lða� x1Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞðb� x1

p
Þ

ð77Þ
On the other hand by using the second of the relations (75) in the first of the integrals (72b) leads to the

formula
ImU1ðx1Þ ¼
1

2p
ffiffiffi
c

p
Z a

c

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � cÞðt � aÞ

p
cosu�ðtÞ

t � x1
dt for x1 62 ðc; aÞ ð78Þ
A comparison of the formulas (76) and (78) leads to the relation
ImU1ðx1Þ ¼
1

2ðc þ 1Þ ImX1ðx1Þ ð79Þ
Using the expansion for large jzj of the function ~zz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� cÞðz� aÞ

p
S1ðzÞ and the formulas (A.2) and (79) gives

the needed expression for ImU1ðx1Þ. Applying a similar approach for the second integral in (72b) and
combining the obtained results leads to the following expression for Imx1ðx1Þ for x1 62 ðc; aÞ
Imx1ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� cÞðx� aÞ

p
½g1~xx

n
þ g3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� cÞðx� aÞ

p
� cosuðxÞ þ d1x2 þ d2xþ d3

o
ð80aÞ
where
d1 ¼ �ðg1 þ g3Þ cos b; d2 ¼ ðg1 þ g3Þ½b1 sin b þ ðaþ cÞ cos b�;

d3 ¼ ðg1 þ g3Þ
b21
2

 �
� ac

!
cos b þ b1

b� 3a� 2c
4

sin b

�
� g3

ða� cÞ2

8
cos b ð80bÞ
with
b ¼ 2e ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ

p
ffiffi
l

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞ

p ; b1 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞðb� cÞ

p
ð80cÞ
Substituting (80a) into (B.5) leads to
HþðtÞ þ H�ðtÞ ¼ 2fðg1 þ g3Þðt � cÞðt � aÞ coshu0ðtÞ þ d1t2 þ d2t þ d3g ð81aÞ

HþðtÞ � H�ðtÞ ¼ 2g1ft
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � cÞðt � aÞ

p
� ðt � cÞðt � aÞg sinhu0ðtÞ ð81bÞ
and the expression (B.7) attains a sufficiently clear form.

Moreover the determination of the arbitrary coefficients C1, C2 and D1, D2 from the formula (68) should
be considered. Because thermoelectrical and mechanical fields are absent at infinity it immediately follows

that C1 ¼ D1 ¼ 0. The coefficients C2, D2 can be found from the condition of the single-valuedness of the

displacements which due to (29) can be written in the form
Z b

c
fF þðx1Þ � F �ðx1Þgdx1 ¼ 0 ð82Þ
For a satisfaction of the condition (82) a way suggested in Appendix A by the formulas (A.1)–(A.4) will be

used. In this case the segment [c; b] should be used instead of [a; b], F ðzÞ should be used as f ðzÞ and c�1 in
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this case is the coefficient before z�1 in the expansion of F ðzÞ at infinity. Taking into account that for large
jzj
ðt � zÞ�1 ¼ �z�1 � tz�2 þOðz�3Þ; X1ðzÞ ¼ iz�2 eib z
 

þ ib1 þ
cþ b
2

!
þOðz�3Þ

X2ðzÞ ¼ z�2 eib z
�

þ ib1 þ
cþ a
2

�
þOðz�3Þ holds true
it follows
c�1 ¼ iC2

 
þ D2 þ i

q0R
k0#

!
eib ð83aÞ
where
R ¼ 1

2p

Z b

a

HþðtÞ þ H�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � aÞðb� tÞ

p dt ð83bÞ
is a real constant. Using the formulas (82) and (83a) and (A.4) lead to the results
C2 ¼ �ðk0#Þ�1q0R; D2 ¼ 0 ð84Þ
Evaluating the integral connected with d1, d2, d3 in (83b) the expression for R can be presented in the form
R ¼ g1 þ g3
p

Z b

a
ðt � cÞ

ffiffiffiffiffiffiffiffiffiffi
t � a
b� t

r
coshu0ðtÞdt þ R0 ð85aÞ
where
R0 ¼
ðbþ aÞ2

4

"
þ ðb� aÞ2

8

#
d1 þ

bþ a
2

d2 þ d3 ð85bÞ
By using the obtained results the stresses and the jumps of the displacements can be calculated in accor-

dance with the formulas (28) and (29). Particularly for x1 > b the formula for the stresses can be presented
in the form
rð1Þ
33 ðx1; 0Þ þ imrð1Þ

13 ðx1; 0Þ ¼ ð1þ cÞ q0 eiuðx1Þ

k0
ffiffiffiffiffiffiffiffiffiffiffiffi
x1 � c

p
�
� iRffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � b
p þ x1ðx1Þ þ x2ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � a
p

�
� g0ðx1Þ ð86Þ
where for x1ðx1Þ it is convenient to use the formula
x1ðx1Þ ¼
1

2p
ffiffiffi
c

p
Z a

c

u1ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � cÞða� tÞ

p
e�iu

�ðtÞ

t � x1
dt
and the functions x2ðx1Þ, uðx1Þ and u�ðtÞ are real in the required intervals. For the determination of the
electric flux Dð1Þ

3 ðx1; 0Þ in the region x1 > b the formula (61) with rð1Þ
33 ðx1; 0Þ defined by (86) can be used.
8. Stresses and electrical displacements at singular points

In this section the behavior of the stresses and the electrical displacements at the crack tip c and at the
ends a, b of the artificial contact zone, respectively, should be considered. At the left crack tip c an
oscillating singularity considered above takes place, and therefore no special attention to this point will be
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given. Further, it follows from the formula (86) that the normal stress is limited for x1 ! bþ 0 and its value
in the point bþ 0 read as follows
rð1Þ
33 ðbþ 0; 0Þ ¼ ð1þ cÞ q0

k0

Rex1ðx1Þ þ x2ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðb� aÞ

p �Reg0ðx1Þ ð87Þ
On the other hand the shear stress is singular for x1 ! bþ 0 as well as the normal stress and the electrical
flux for x1 ! aþ 0. The following IFs are introduced to characterize these singularities
k1 ¼ lim
x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � aÞ

p
rð1Þ
33 ðx1; 0Þ; k2 ¼ lim

x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
rð1Þ
13 ðx1; 0Þ ð88Þ

k4 ¼ lim
x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � aÞ

p
Dð1Þ
3 ðx1; 0Þ
Using for the determination of the SIF k1 the formulas (28) and (68) and taking into account that X1ðx1Þ,
g0ðx1Þ are limited for x1 ! aþ 0 as well as Qðx1Þ � 0, e�u0ðaÞ ¼ c�0:5 are valid the following expression can
be found
k1 ¼
q0
k0

ffiffiffiffiffiffiffiffiffiffiffi
2pc
a� c

r
Re½2x1ðaþ 0Þ þ xþ

2 ðaþ 0Þ þ x�
2 ðaþ 0Þ� ð89Þ
Applying the Plemeli formula (Muskhelishvili, 1977) and by using (B.3), (B.7), (B.8) and (81) leads to the

following expression for the SIF
k1 ¼
q0
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pða� cÞ

s
ðk11 þ k12Þ ð90aÞ
where
k11 ¼
Z a

c

ffiffiffiffiffiffiffiffiffiffi
t � c
a� t

r
½�mh1~tt sinu�ðtÞ þ h3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � cÞða� tÞ

p
cosu�ðtÞ�dt ð90bÞ

k12 ¼ �2g1
ffiffiffi
c

p Z b

a
ðt
"

� cÞ � ~tt

ffiffiffiffiffiffiffiffiffiffi
t � c
t � a

r #
sinhu0ðtÞdt ð90cÞ
It follows from the formula (86) that
k2 ¼ �ð1þ cÞ q0
mk0

ffiffiffiffiffiffi
2p
l

r
R ð91Þ
The SIF of the normal stress kb1 ¼ limx1!b�0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðb� x1Þ

p
rð1Þ
11 ðx1; 0Þ at the point b can be presented by means

of the formulas (28) and (68) via the SIF k2 in the form
kb1 ¼ �m c � 1
c þ 1 k2 ð92Þ
and the intensity factor of the electrical flux (88)3 is defined completely by the SIF k1 as it was already
shown by Herrmann and Loboda (2000)
k4 ¼ g�133 g43

�
� ðg31g43 � g41g33Þ

c � 1
2cT

�
k1 ð93Þ
It is clear from the last formulas that the SIFs kb1 and k4 are completely defined by the SIFs k2 and k1,
respectively.
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The energy release rates Gc
1, G

c
2 related to the points a and b, respectively, according to Herrmann and

Loboda (2000) can be presented in the form
Gc
1 ¼ � cosh2 pe

2mð1þ cÞ# k
2
1 ; Gc

2 ¼ � m
2ð1þ cÞ# k

2
2 ð94Þ
For the following analysis it is convenient to introduce a parameter k ¼ ðb� aÞ=l defining a relative contact
zone length. For any value of k the SIFs k1 and k2 can be easily evaluated numerically from the formulas

(90) and (91), respectively. Some difficulties can arise only for small values of the parameter k when the
behavior of the integrand at the boundaries of integration in (90b) becomes rather complicated. This case is

very important because the real contact zone length is usually extremely small. Fortunately, for small values

of k the formulas (90) and (85a), (91) can be presented with high accuracy in a closed form.
In order to simplify (90b) this expression can be presented in the following form
k11 ¼ 2p
ffiffiffi
c

p
Rex1ðaþ 0Þ ¼ 2p

ffiffiffi
c

p
Re

e�ib

2pi

Z a

c

u1ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � cÞðt � aÞ

p
t � x

ei½b�uðtÞ� dt

( )
x!aþ0

ð95Þ
Taking into account that
b � uðtÞ ¼ 2e ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� cÞðt � aÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� cÞðt � bÞ

p
ð
ffiffiffiffiffiffiffiffiffiffiffi
b� c

p
þ ffiffiffiffiffiffiffiffiffiffiffi

a� c
p Þ

ffiffiffiffiffiffiffiffiffiffi
t � c

p ð96aÞ
holds true and using for a small k the value (a� c) instead of (b� c) as well as the value (t � a) instead of
(t � b) in this formula the expression (96a) can be rewritten as
b � uðtÞ � e ln
t � a
t � c

� �
ð96bÞ
and one arrives at the following expression:
k11 � 2p
ffiffiffi
c

p
Rebe�ibIðxÞcx!aþ0 ð97aÞ
with
IðzÞ ¼ 1

2pi

Z a

c

u1ðtÞdt
XþðtÞðt � zÞ ð97bÞ
and X ðzÞ defined by the formula (57b). An estimation of the performed simplification has been given
by Herrmann and Loboda (2001). The integral (97b) has already been evaluated by the formula (58a)
according to
IðaÞ ¼ i
ða� cÞ2

8
fð1� 2ieÞ2ðg1 þ g3Þ � g3g ð98Þ
The SIFs k1, k2 for a small k by assuming ða� cÞ ¼ l, ðb� aÞ ¼ 0 can be presented in the form
ffiffiffi
a

p
k1 � imk2 �

ffiffiffi
a

p
~kk1 � im~kk2 ¼ �iðc þ 1Þ q0

k0

l
ffiffiffiffiffi
pl

p

4
ffiffiffi
2

p eibbð1þ 2ieÞ2ðg1 þ g3Þ � g3c ð99aÞ
where
a ¼ ðc þ 1Þ2

4c
¼ cosh2ðpeÞ ð99bÞ
A numerical estimation had shown that these SIFs can be used with an admissible accuracy also for
moderate values of k.



K.P. Herrmann, V.V. Loboda / International Journal of Solids and Structures 40 (2003) 4191–4217 4209
Finally, we present the SIFs (88) for a pure electromechanical loading using the reference by Herrmann

and Loboda (2000)
ffiffiffi
a

p
kðemÞ
1 � imkðemÞ

2 ¼
ffiffiffiffiffi
pl
2

r
ð1þ 2ieÞ½

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
ðr cos b þ ms sin bÞ þ iðr sin b � ms cos bÞ� ð100Þ
which for small values of k take the form
ffiffiffi
a

p
~kkðemÞ
1 � im~kkðemÞ

2 ¼
ffiffiffiffiffi
pl
2

r
eibð1þ 2ieÞðr � imsÞ ð101Þ
Superscript (em) is prescribed for the SIFs related to these loadings.

For the classical interface crack model the associated SIFs can be written as
KðemÞ
1 � imK ðemÞ

2 ¼
ffiffiffiffiffi
pl
2

r
e�iwð1þ 2ieÞðr � imsÞ ð102Þ
and for a combination of electromechanical and thermal loading they must be found as a sum of the SIFs

(63) and (102) in the classical case and (99), (100) or (101) by using a contact zone model. It is worth to note
that the following relation between the SIFs of the classical and the contact zone (small k) models is valid
ðK1 þ KðemÞ
1 Þ � imðK2 þ KðemÞ

2 Þ ¼ e�iðwþbÞ½
ffiffiffi
a

p
ð~kk1 þ ~kkðemÞ

1 Þ � imð~kk2 þ ~kkðemÞ
2 Þ� ð103Þ
and moreover, the SIFs in the case of electrically permeable crack faces do not depend on the electrical

flux d.
9. Contact zone model

The solution obtained in the Sections 7 and 8 is valid for any position of the point a. But this solution
becomes physically correct if the following additional conditions
rð1Þ
33 ðx1; 0Þ6 0 for x1 2 L2; ½u3ðx; 0Þ�P 0 for x1 2 L1 ð104Þ
are satisfied. In this case a real contact zone in the sense of Comninou (1977) takes place at the crack tip.

Assuming that the direction of the temperature flux satisfies the inequality (53) both inequalities (104)

are satisfied when
k1 þ kðemÞ
1 ¼ 0 ð105Þ
holds true at point a. For a large contact zone length this equation consisting of the formulas (90) and (100)
can be solved numerically and a maximum root from the interval ð0; 1Þ should be taken. For a small value
of k the associated equation by using of (101) and (102) can be written in the following form
Refeibð1þ 2ieÞ½1� imk � piðm3 þ 2iem4Þ�g ¼ 0 ð106aÞ

where
k ¼ s
r
; m3 ¼ m1 �

4e2

1þ 4e2 m2; m4 ¼ m1 �
2þ 4e2
1þ 4e2 m2

m1 ¼
�mh1

#k0d2ð1þ cÞ ; m2 ¼
h3

#k0d2ð1� cÞ ð106bÞ
The dimensionless parameter p in Eq. (106a) having the following form
p ¼ c þ 1
4

q0#d2l
r

ð107Þ
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defines the intensity of the temperature flux q0 with respect to the tensile stress r at infinity. The parameter
d2 was chosen to be equal to d2 ¼ bð2Þ

11 =C
ð2Þ
66 kð2Þ

11 ð1þ ðCð2Þ
13 =C

ð2Þ
11 ÞÞ, and it has the same dimension as the dis-

tortivity for an isotropic material.

Eq. (106a) can be rewritten in the following form
Refeibð1þ 2ieÞð1þ ik�Þg ¼ 0 ð108aÞ

where the value
k� ¼ �mk � pm3
1þ 2pem4

ð108bÞ
can be treated as a coefficient of the shear-normal loading with taking into account the intensity of the
temperature flux. An exact solution of Eq. (108a) can be written in the form (Herrmann and Loboda, 1999)
k0 � ~kk0 ¼ 4 exp
1

e
tan�1

1� 2ek�Þ
2e þ k�

 !��
þ pn

��
ð109Þ
Here k0, ~kk0 are the roots of Eqs. (105) and (108), respectively, and n is an integer number which should be
used properly to define a maximum root in the interval ð0; 1Þ of Eq. (108a).
In the paper by Rice (1988) the following equation
RefKriec =ð1þ 2ieÞg ¼ 0 ð110Þ

has been suggested for the determination of the length rc of the interpenetration zone of the crack faces
predicted by the classical interface crack model. In spite of this equation has been suggested concerning

isotropic materials it can be used for the considered problem as well because according to the results of

Herrmann and Loboda (2000) the behavior of the displacement jumps at the crack tip of a permeable crack

for a piezoelectric bimaterial can be defined by same formula as for an isotropic one provided the complex

SIF is taken in the form
K ¼ K1 � imK2 þ KðemÞ
1 � imK ðemÞ

2 ð111Þ

Using the expressions (63) and (102), Eq. (110) can be written in the form
Refeiuð1þ ik�Þg ¼ 0 ð112aÞ

with
u ¼ e ln
rc
l

� �
and k� taken from Eq: ð108bÞ ð112bÞ
The solution of Eq. (112a) can be easily given in a form similar to (109) and, moreover, it can be found from

the comparison of Eqs. (108a) and (112a) the relation between the real contact zone length ~kk0l and the
length rc of the interpenetration zone of the crack faces in the following form
~kk0l ¼ 4 exp½�e�1 tan�1ð2eÞ�rc ð113Þ

It is worth to remind that the relation (113) is valid for small values of ðrc=lÞ only.
The SIF k20 þ kðemÞ20 ¼ ðk2 þ kðemÞ2 Þjk¼k0

correspondent to a real contact zone length can be found by means
of the formulas (85), (91) and (100) in which k ¼ k0 should be taken. For small values of k0 this SIF can be
found by means of the following formula
~kk20 þ ~kkðemÞ20 ¼ r

ffiffiffiffiffi
pl
2

r
Imfeib0ð1þ 2ieÞð1þ ik�Þg ð114aÞ
where
b0 ¼ e lnð0:25~kk0Þ ð114bÞ
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10. Result and discussions

The formulas (108b) and (109) show that for a certain bimaterial and small values of k0 the contact zone
length is completely defined by the parameter k� only. The numerical analysis of several piezoelectric
bimaterials had shown that the parameters m1 and m3 appeared to be always positive. Therefore, provided
the direction of the temperature flux satisfies the inequality (53) and s ¼ 0 holds true, by applying a tension

r and gradually increase of the heat flux, the contact zone length will get larger for q0e > 0 and smaller for

q0e < 0. For a general tension-shear-thermal loading the situation is more complicated and various cases

can arise. However, in the range of small k0 the increase of q0 leads to a contact zone length defined by a
limited value of the parameter k� which is equal to
Fig. 4.

coeffici
k�1 ¼ lim
q0!1

k�ðq0Þ ¼ � m3
2em4

ð115Þ
It follows from Eq. (115) that for a small value of m4 a long contact zone can occur for a pure thermal
loading. However, in such cases a more correct verification of the contact zone length must be performed by

means of Eq. (105).

The numerical results were obtained for a bimaterial composed of piezoelectric cadmium selenium

(Ashida and Tauchert, 1997) (the upper material) and glass (the lower one). The characteristics of these

materials are presented in Appendix C (column 1––the upper material, column 2––the lower material).

Because for these materials the value of ðg11h3 � g31h1Þ=g11 appears to be negative the direction of the
temperature flux q0 according to the inequality (53) was chosen to be negative as well.
The variations of the value k� which can be considered as the coefficient of normal-shear-thermal loading

with respect to the intensity of the thermal flux p are shown in Fig. 4 for various coefficients of normal-shear
loading k. It can be seen that for k ¼ 0 (s ¼ 0) the k�-value increases with increasing intensity of the
temperature flux p. On the other hand for k ¼ 10 and k ¼ 50 the k�-values decrease with increasing p.
However, in all three cases k� tends for p ! �1 to the same value 0.810 which can be predicted by the

formula (115).

In Fig. 5 the variation of the relative contact zone length k0 with respect to the same parameters as in
Fig. 4 are shown. The values of k0 are usually extremely small, therefore, the logarithmic scale is used.
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The variation of the coefficient of normal-shear-thermal loading with respect to the intensity of the thermal flux p for different
ents of normal-shear loading k.
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However for k ¼ 50 and relatively small magnitudes of p the values of k0 are comparable to 1. This special
case is demonstrated in the traditional scale in Fig. 6. For determination of k0 in Fig. 6, Eq. (105) has been
used, and the differences of the correspondent results and the asymptotic values obtained by the formula

(109) are shown in this figure. It is clear that for k0 > 0:05 this difference can be visualized, but for k0 < 0:05
it becomes negligible small and the formula (109) can be used for determination of k0. It should be noted
that for any value of k the relative contact zone length k0 for p ! �1 tends to the same value

7.0225	 10�19 as for a pure thermal loading.
Fig. 7 demonstrates the values of the SIF k20=ðr

ffiffi
l

p
Þ correspondent to the same parameters as in the Figs.

4 and 5. The SIF k20 grows with growing intensity of the heat flux, and of course its value essentially
depends on the value of the shear loading s defined by the parameter k.
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Fig. 6. The variation of the relative contact zone length k0 with respect to p for k ¼ 50. Exact values obtained from Eq. (105) and

asymptotic values given by Eq. (109) are presented.



0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100
-p

k=0
k=10
k=50l

k

σ
20

Fig. 7. The variation of the stress intensity factor k20 with respect to the intensity of the thermal flux p for different normal-shear
loading coefficients k.

K.P. Herrmann, V.V. Loboda / International Journal of Solids and Structures 40 (2003) 4191–4217 4213
11. Conclusion

An interface crack between two semi-infinite piezoelectric spaces under the action of a combined

thermoelectromechanical loading has been considered. By using the extended Lekhnitskii–Eshelby–Stroh

representation developed for piezoelectric materials by Barnett and Lothe (1975) and Shen and Kuang

(1998) scalar and matrix–vector expressions for the temperature flux and the derivatives of the temperature

jump as well as for the stresses, electrical displacements and the derivatives of the mechanical displacement
and electrical potential jumps at the interface via sectionally-holomorphic functions have been presented.

Furthermore, an auxiliary problem concerning an admissible direction of the temperature flux has been

considered. It has been found that the inequality (52) defining the heat flux direction permits a transition

from a perfect thermal contact of two piezoelectric bodies to their mechanical and thermal separation. This

inequality can be treated as a generalization for piezoelectric bimaterials of the associated inequality pre-

sented for isotropic materials by Martin-Moran et al. (1983).

An open crack model is considered briefly and analytical expressions for the stresses, electrical flux,

stress intensity factors and the energy release rate corresponding to this model have been given by the
formulas (60)–(65).

The main attention in the paper has been devoted to the analysis of the contact of the interface crack

faces. Assuming an existence of an artificial contact zone at the right crack tip an inhomogeneous combined

Dirichlet–Riemann problem has been formulated. An exact analytical solution of this problem has been

presented in the form of Cauchy type integrals and the stress and electrical displacement intensity factors

have been expressed in the form of rather simple integrals (90) and (91). For a small contact zone length a

closed form asymptotic formula (99) has been derived for the mentioned intensity factors. Moreover, a

single analytical relation (103) between these intensity factors and the stress intensity factors of the classical
model has been obtained.

The real contact zone length in a Comninou sense has been derived as a particular case of the obtained

solution. Namely, a transcendental equation (105) for the determination of this length has been obtained.

The solution of this equation consisting of rather simple integrals can be found numerically for any relative

contact zone length k0. However, for small k0-values a closed form expression (109) has been found and k20
has been written in a rather easier form (114) as well.

Moreover, an important parameter k� defined by formula (108b) has been found. This parameter can be
treated as a coefficient of the shear-normal loading by taking into account a temperature flux. By means of
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this parameter the relative contact zone length k0 and the associated stress intensity factor k20 can easily be
evaluated. Numerical results obtained both for small and long contact zone lengths, for different loading

coefficients and various intensities of the temperature flux show that depending on these parameters the

growth of the intensity of the temperature flux can lead both to an increase or a decrease of the contact zone
length and mostly to an increase of the associated stress intensity factor k20.
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Appendix A. Some important formulas related to Cauchy integrals

The consideration of the problem of linear relationship leads to the following general formulas by

applying Cauchy integrals. Let a function f ðzÞ be analytic in the whole plane with a cut along the segment
½a; b� of the axis x, and the boundary values of f from the lower and upper sides of ½a; b� should be f þðx1Þ
and f �ðx1Þ. Consider the Cauchy integral
XðzÞ ¼ 1

2pi

Z
C

f ðnÞ
n � z

dn ðA:1Þ
where C is a contour surrounding the segment ½a; b� in a clockwise direction, and assume that the point z
remains outside of this contour. Then according to the formula 70.30 of Muskhelishvili (1977) for any z
outside C holds true
XðzÞ ¼ f ðzÞ � cpzp � 
 
 
 � c0 ðA:2Þ

where f ðzÞjz!1 ¼ cpzp þ 
 
 
 þ c0 þ c�1z�1 þ c�2z�2 þ 
 
 

If the contour C shrinks into ½a; b� it can be shown that
XðzÞ ¼ 1

2pi

Z b

a

f þðtÞ � f �ðtÞ
t � z

dt ðA:3Þ
The expansions of the left and right sides of (A.3) valid for large jzj read Muskhelishvili (1977)
XðzÞ ¼ c�1z�1 þOðz�2Þ;
1

2pi

Z b

a

f þðtÞ � f �ðtÞ
t � z

dt ¼ �z�1 1
2pi

Z b

a
½f þðtÞ � f �ðtÞ�dt þOðz�2Þ
A comparison of the coefficients connected with the term z�1 at the left and right sides of (A.2) leads to
Z b

a
½f þðtÞ � f �ðtÞ�dt ¼ �2pic�1 ðA:4Þ
This formula plays an important role concerning the consideration of the single-valuedness of the dis-

placements.

Further, let us consider the integral
IðzÞ ¼ 1

2pi

Z b

a

f þðtÞ
t � z

dt ðA:5Þ
by assuming that the boundary values of f are related to each other as follows
f �ðx1Þ ¼ kf þðx1Þ ðA:6Þ
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Considering the integral (A.1) again and by shrinking the contour C to [a; b] it follows that
IðzÞ ¼ 1

1� k
XðzÞ ¼ 1

1� k
ff ðzÞ � cpzp � 
 
 
 � c0g ðA:7Þ
The obtained formula is similar to the formula (110.40) of Muskhelishvili (1977), but it is related to a more

general class of functions than the associated formula just mentioned.

Important integrals can be evaluated on the base of formulas (A.5)–(A.7). Let for example a ¼ �b and
f ðzÞ ¼ ðzþ bÞ�1=2þieðz� bÞ�1=2�ie. In this case are k ¼ �c�1 and c ¼ e2pe. Taking into account that for large

jzj f ðzÞ ¼ f1ðzÞ ¼ z�1 þ 2iebz�2 þ ð0:5� 2e2Þb2z�3 þ 
 
 
, it valids IðzÞ ¼ cðc þ 1Þ�1f ðzÞ. An expansion of
the left and right sides of the last equation for large jzj by use of formula (A.5) can be written in the form
X1
m¼1

z�m
1

2pi

Z b

a
tm�1f þðtÞdt

� �
¼ f1ðzÞ ðA:8Þ
A comparison of the coefficients connected with the term z�m (m ¼ 1, 2, 3) at the left and right sides of (A.8)

and taking into account that cosh pe ¼ ðc þ 1Þ=ð2 ffiffiffi
c

p Þ leads to the following formulas
Z b

�b

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � t2

p b� t
bþ t

 !ie
dt ¼ p

cosh pe
;

Z b

�b

tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � t2

p b� t
bþ t

 !ie
dt ¼ � 2ipbe

cosh pe
;

Z b

�b

t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � t2

p b� t
bþ t

 !ie
dt ¼ pb2ð1� 4e2Þ

2 cosh pe
ðA:9Þ
Appendix B. On a particular solution of an inhomogeneous Dirichlet–Riemann problem

Denoting by X2ðzÞ a particular solution of a homogeneous problem associated with the problem (56) and
(67), Eq. (56) can be written as
F þðx1Þ
Xþ
2 ðx1Þ

� F �ðx1Þ
X�
2 ðx1Þ

¼ q0
k0#

u1ðx1Þ
Xþ
2 ðx1Þ

for x1 2 L1 ðB:1Þ
A particular solution of Eq. (B.1) reads according to Muskhelishvili (1977) is the following
F ðzÞ
X2ðzÞ

¼ q0
k0#

½x1ðzÞ þ x2ðzÞ� ðB:2Þ
where
x1ðzÞ ¼
1

2pi

Z
L1

u1ðtÞdt
Xþ
2 ðtÞðt � zÞ ðB:3Þ
and x2ðzÞ is an arbitrary function analytic on L1. Taking into account that X�
2 ðx1Þ is real on L2, Eq. (67)

leads to
Imx�
2 ðx1Þ ¼ H�ðx1Þ for x1 2 L2 ðB:4Þ
where
H�ðx1Þ ¼
u�
2 ðx1Þ

X�
2 ðx1Þ

� Imx1ðx1Þ ðB:5Þ
Introducing a new function x3ðzÞ ¼ �ix2ðzÞ, Eq. (B.4) can be written as

Rex�

3 ðx1Þ ¼ H�ðx1Þ for x1 2 L2 ðB:6Þ
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By using a particular solution of the Dirichlet problem (B.6) presented by the formula (46.25) of the refe-

rence by Gakhov (1966) the function x2ðzÞ can be written as follows
x2ðzÞ ¼
Y ðzÞ
2p

Z
L2

HþðtÞ þ H�ðtÞ
Y þðtÞðt � zÞ dt þ 1

2p

Z
L2

HþðtÞ � H�ðtÞ
t � z

dt ðB:7Þ
with
Y ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞðz� bÞ

p
ðB:8Þ
Further, by applying the formula (B.2) a particular solution of the inhomogeneous problem (56) and (67)

can be given in the form
F0ðzÞ ¼
q0
k0#

X2ðzÞ½x1ðzÞ þ x2ðzÞ� ðB:9Þ
Appendix C. Characteristics of the bimaterial

The upper material (Cad Se) The lower material (glass)

c11 	 10�10 (N/m2) 7.41 5.88

c33 	 10�10 (N/m2) 8.36 5.88
c13 	 10�10 (N/m2) 3.93 1.47

c44 	 10�10 (N/m2) 1.32 2.21

e31 (C/m2) )0.16 0.00

e15 (C/m2) )0.138 0.00

e33 (C/m2) 0.347 0.00

e11 	 1010 (C/Vm) 0.825 0.885

e33 	 1010 (C/Vm) 0.902 0.885

k11 (W/mK) 9.00 0.74
k33 (W/mK) 9.00 0.74

b11 	 10�6 (N/m2 K) 0.621 1.13

b33 	 10�6 (N/m2 K) 0.551 1.13

b34 	 106 (C/m2 K) )2.94 0.00
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