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Abstract

An electrically permeable interface crack with a frictionless contact zone at the right crack tip between two semi-
infinite piezoelectric spaces under the action of a remote electromechanical loading and a temperature flux is considered.
Assuming that all fields are independent on the coordinate x, co-directed with the crack front, the stresses, the electrical
and the temperature fluxes as well as the derivatives of the jumps of the displacements, the electrical potential and the
temperature at the interface are presented via a set of analytic functions in the (x;,x;)-plane with a cut along the crack.
Due to this representation firstly an auxiliary problem concerning the direction of the heat flux permitting a transition
from a perfect thermal contact to a separation has been solved for a piezoelectric bimaterial. Besides, an inhomo-
geneous combined Dirichlet-Riemann boundary value problem has been formulated and solved exactly for the above
mentioned interface crack. Stress and electrical displacements intensity factors are found in a clear analytical form
which is especially easier for a small contact zone length. A simple equation and a closed form analytical formula for the
determination of the real contact zone length have been derived and compared with the associated equation of the
classical (oscillating) interface crack model defining the zone of crack faces interpenetration. For a numerical illus-
tration of the obtained results a bimaterial cadmium selenium/glass has been used, and the influence of the heat flux
upon the contact zone length and the associated stress intensity factor has been shown.
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1. Introduction

In the last years piezoelectric bimaterials are widely used in different devices working under a high-
temperature environment. However, piezoceramic bimaterials often contain various microdefects and
particularly interface cracks. Such cracks are the most dangerous kind of defects especially under an es-
sential temperature field. The problem of an interface crack in a piezoelectric bimaterial is rather com-
plicated under pure electromechanical loading even and there are only several publications related to this
subject. The consideration of a temperature field in addition to the electromechanical loading leads to an
essential enlargement of the associated mathematical model and therefore the number of results obtained
till now do not correspond to the importance of the problem in question.

An interface crack in an infinite piezoelectric bimaterial under the action of a remote temperature flux
has been analytically investigated in the paper by Shen and Kuang (1998), where the representations of
Lekhnitskii (1963), Eshelby et al. (1953) and Stroh (1958) extended for the piezoelectric case by Barnett and
Lothe (1975) have been used. Thereby an electrically impermeable crack has been assumed in this paper.
Later a similar problem for an electrically permeable interface crack has been considered in the paper by
Gao and Wang (2001), where also as in the paper by Shen and Kuang (1998) the classical interface crack
model has been used. The solutions obtained in the frame of this model possesses the oscillating singu-
larities at the crack tips which was found by Williams (1959). Nevertheless, for small zone lengths of
overlapping of crack faces this solution is rather useful for an interface crack investigation because for such
cases the required fracture mechanical parameters can be accurately defined by this solution. However, the
existence of an essential shear loading and a temperature field lead in certain cases to the appearance of a
long contact zone of the interface crack faces. In such cases the approach based upon the initial assumption
concerning the existence of a contact zone (Comninou, 1977) should be used.

A penny-shaped interface crack with a contact region between two isotropic materials under a ther-
momechanical loading has been investigated by Martin-Moran et al. (1983) and by Barber and Comninou
(1983) by means of the method of singular integral equations. The thermal conditions in the zone of the
mechanical contact of the crack faces in particular have been investigated in these papers, and important
conclusions concerning the formulation of these conditions depending on the direction of the heat flux have
been developed. An interface crack with a contact zone in an anisotropic bimaterial under thermomecha-
nical loading has been analytically studied by Herrmann and Loboda (2001), where a method similar to the
approach of the present paper has been developed. A thermopiezoelectric bimaterial with an interface crack
under the assumption of a contact zone model has been investigated by Qin and Mai (1999) by means of
Lekhnitskii—Eshelby—Stroh formalism. The method of singular integral equations has been used in this
paper, and the crack faces including the contact zones were assumed to be thermally and electrically
insulated.

In the present investigation an exact analytical solution for a crack with a contact zone between two
piezoelectric semi-infinite spaces under a remote electromechanical loading and a temperature flux has been
found. A transcendental equation and rather simple formula for the determination of the contact zone
length as well as closed formulas for the associated stress and electrical intensity factors have been found. In
this part of the paper the attention is focused on the case of an electrically permeable crack, while the
electrically impermeable will be considered in Part II of this paper.

2. Basic relations for a thermopiezoelectric solid

For a stationary process in the absence of body forces and free charges the constitutive relations for a
linear piezothermoelectric material can be presented according to Mindlin (1974) in the form
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Iy = Eygi Vi — B,T, MH;;=0 (1)
qi = _/L'jT,ja qdii = 0 (2)
where
U, K = 1,2,3
n={ k2. )
o Glja l,J: 1,2,3
H’J{D,-, i=1,23 J=4 @
and
Cijkl, JaK:17273
) o e;,-j, J:1,2,3, K:4
Eur = ew, K=123 J=4 (5)
—é&j1, J = K = 4

In the relations (1)~(5) u, @, 0;;, D;, q; are the elastic displacements, electric potential, stresses, electric
displacements, and heat flux components, respectively, and T is the temperature. Furthermore, ¢, ey, &;
and A; are the elastic moduli, piezoelectric constants, dielectric constants and the heat conduction coeffi-
cients, respectively. The values f3;, are the stress—temperature coefficients for J = 1, 2, 3 and f,, present the
pyroelectric constants. Small subscripts in (1)—(5) and afterwards are always ranging from 1 to 3, capital
subscripts are ranging from 1 to 4 and summation on repeated Latin suffixes has been used.

Assuming all fields are independent on the coordinate x, and using the method developed by Clements
(1983) for thermoelastic problems, one obtains the following general solution to Eq. (2)

T=yz)+7@), q=-—(a+ti)y"(z)— (a+7T0)7"(z) (6)

where z, = x| + tx3, the prime (') denotes differentiation with respect to the argument, the overbar stands
for the complex conjugate and 7 is a root with a positive imaginary part of the equation

/133‘[2 + (/l]g —+ /131)17 —+ /111 = O (7)

A general solution of Eq. (1) by using the Lekhnitskii—Eshelby—Stroh representation and its application to
piezoelectric (Barnett and Lothe, 1975) and thermopiezoelectric (Shen and Kuang, 1998; Qin and Mai,
1999) materials can be presented in the form

V = Af(z) + ¢x(z,) + Af(z) + ¢x(z,) (8)

t= B (2) + d/(z) + BT (2) + 47 (z) 9)

where z; = x| + pyx3, V = [uy, up, us, (p}T, t = [031, 032, 033,D3]T (the superscript “T” stands for the transposed
matrix), A = [A], Ay, A3, A4]; py and A; = [a1y,a25,a3/,a4;] are an eigenvalue and an eigenvector, respec-
tively, of the system

|Q +p/(R+R") +pIT|A, =0 (10)

with the elements of the 4 x 4 matrices Q, R and T defined as O = Eyx1, Rix = Evxs, Tjx = Ezxs. The
vector c¢ is defined from the equation

|Q +t(R+R") +°T|e =N + N, (11)

with N, = [B,.1, Buzs Buss ﬁm4]T (m =1, 2) and the 4 x 4 matrix B and the vector d can be found by the
formulas
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B=R'A+TAP, d=R"+1T)c—N, (12)

with P = diag[p, p», p3, ps].

It is worth to mention that y(z,) from the formula (6) is an arbitrary analytic function and f(z) in the
formulas (8) and (9) is an arbitrary analytic vector function with four components which should be
determined later.

3. A bimaterial thermopiezoelectric space with a mixed boundary conditions at the interface

A bimaterial composed of two different piezoelectric semi-infinite spaces x; > 0 and x; < 0 with thermo-

mechanical properties defined by the matrices EW W B(I) and E%. ., 2? ﬂ@ respectively, is con-
K> 2ij s Pig K> ij s P p Y,

sidered (Fig. 1). We assume, that the component ¢; of the temperature flux vector and the vector t are
continuous across the whole bimaterial interface and the parts L, = {(—o0,d,) U (a1,d>) U - (d,,00)} and
L={(—o00,c1)U(b1,c2)U---(b,y,00)} ([diyai] C [ei,bi]) of the interface —oo < x; < 00, x3 =0 are thermally
and electromechanically bounded, respectively, i.e. the boundary conditions at the interface x; = 0 are the
following

¢ =4q%, tV(x,0) =t?(x,,0) forx; € (—o0,00) (13)

7O =70 forx; €L, VV(x,0)=V?(x,0) forx €L (14)
Presenting (6), for i = 3 in the form

g3 = —iky"(z) + k7" (z) (15)
with k£ = A33(t — 7)/(2i) the heat flux continuity condition gives

iV () + P75 () = k@5 () + kU7 () (16)

where the signs “+”” and “—” denotes the upper and lower parts of the interface, i = v/—1, and k', y,(z,)
and £, y,(z,) are related to the upper and lower half-spaces, respectively. Introducing a new function

Cein SV (z) + kY% (z),  for x3 >0
X (Zt) = {ik(z)xg(zl) + ik(])z/ll(zt)7 for x3 < 0 (17)

and using Eq. (16) one can see that the function y*(z) is analytic in the whole plane. Assuming the heat flux
disappears at infinity and by using Liouville’s theorem one obtains that y*(z) = 0 and the formula (17) leads
to

AX3
1) 1) 1)
40 A
6 b ¢ b ceee G bn X1
1, il I; il I% :I >
dl a; d2 ay dn a-n

2 2 2
efp. 47, 7

Fig. 1. Bimaterial thermopiezoelectric plane with mixed boundary conditions.
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vl k<] ) 1" v k(Z) 1"

Th(z) = el (z,) forx; >0, 71 (z) = —rn ke (z) forx; <0 (18)
Further, by introducing the derivative of the temperature jump across the bimaterial interface

[7'(x1)] = T} (x1,0) — 757 (x1,0) (19)
and by using Egs. (6);, (18) leads to

[7'(x1)] = 0" (x1) = 0" (x1) (20a)
where

A+ EY /D)y (z,),  for x3 >0

0(z) = { (1 4+ k2 kDY yy(z,), for x3 <0 (20b)
and the formula (15) written for the upper part of the interface as well as Egs. (18) and (20b) lead to

g (x1,0) = —iko{0" (x1) + 0" (x1)} (21a)
with

kD2
ko = U] (21b)

It is clearly seen from Eqgs. (14),, (19) and (20a) that the function 6(z,) is analytic in the whole plane with a
cut along (—o0,00) \ L,.

Using an approach developed for a thermoelastic case by Clements (1983) and the relations (9) and (13),
the following expressions at the interface are obtained

V()] = W) = W () (22)

t(x1,0) = GW' (x;) — GW ™ (x;) — g(x1) (23)
where

V()] = VW (x1,0) = VP (x1,0) (24)

G=B"D"!, D=AY_-—LBY, L=A®B?)"", W¥(x;) = W(x; £0) and the vector-function g(x;) =
[21(x1), 82(x1), g3(x1), g4(x1)]" can be presented in the form

g(xl) = h0/+(x1) — 1_19/7()(1) (25)
with
1 T 3% * 2 1
and
¢ = k@ 4 k(1)5(2>, d = x@a® + K1a® (26b)

It is worth to note that for the boundary conditions (14) the vector function W(z) = [W(z), W (z),
Wi(z), Ws(z)]" is analytic in the whole plane with a cut along (—oco, 00) \ L. We note as well that the matrix G
and the vector function W(z) are related to the matrix H and the vector function ¥'(z) of the papers by Suo
et al. (1992) and Shen and Kuang (1998) as iG™' = H, W(z) = —iH¥/(z), respectively, and the relations (22)
and (23) can be written without any difficulties in terms of the matrix H and the vector function ¥'(z) from
these papers. But for the formulation of the problems considered in the following chapters the presentation
(22) and (23) appears to be more convenient than the form used in the mentioned papers. On the base of the
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relations (22) and (23) different problems of linear relationship can be formulated for thermopiezoelectric
bimaterials with cuts at the material interfaces.

The attention is focused in the following on thermopiezoelectric materials of the symmetry class 6mm
(Parton and Kudryavtsev, 1988) poled in the direction x; which have an essential practical significance as
so-called poled ceramics. In this case for all fields which are independent of the coordinate x, the dis-
placement ¥, of the vector-function V of Eq. (3) decouples in the (x;,x3)-plane from the components
("1, Vs, V). Because of the simplicity of the V;-determination our attention will be focused on the plane
problem for the components (V], V3, V). In this case similarly to the contracted notations in the anisotropic
elasticity (Sokolnikoff, 1956) the following relations for the elements of the matrix E related to the (x, x3)-
plane can be introduced: Ey111 = ci1, E1i33 = 13, E3333 = ¢33, E1313 = Ca4, Ev1az = €31, 33 = e33, E1341 = ey,
E441 = —¢11, Ezaaz = —e33. Moreover, the matrix G without the second row and column and the vector h
without the second element have the following structure (Herrmann and Loboda, 2000)

Gu Gi Gu ign g3 gu i0,
G= |Gy Gy Gy|=|gn igs igu|, h=<{ 0; (27)
Gy Gy Gy Qa1 g4 igw 04

where all g;; and 0; are real.

4. Formulation of the problem and the thermal solution

Consider now the same bimaterial as in the previous chapter and assume that a tunnel interface crack is
situated in the region ¢ <x; < b, x3 = 0. The half-spaces are loaded at infinity with uniform stresses ag';” =o0,
o\ = rand 6\ = 6> as well as with uniform electric displacements DY) = d, D" = D> which satisfy the
continuity conditions at the interface. Besides a uniform temperature flux ¢q in the x3;-direction is imposed
at infinity. Because the load and the temperature flux do not depend on the coordinate x, the displacements
u,(c'") are independent on x; and for the matrix G in the form (27) a two-dimensional problem in the (x;,x3)-
plane can be considered (Fig. 2).

It will be assumed that the crack surfaces are traction-free for x; € [¢,a] = L; whilst they should be in
frictionless contact for x; € (a,b) = L,, and the position of the point a is arbitrarily chosen for the time

REARARARERARERAR NIRRT
]
o EQ AP, 9 [o: ] o

{ I_Xi c Ly al, b T
T
R p— SV kil [ p—

Fig. 2. Thermopiezoelectric plane with an interface crack under thermoelectromechanical loading.
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being. This formulation is valid for the case when a longer contact zone arises at the right crack tip. In this
case according to the results of Dundurs and Gautesen (1988) the oscillating singularity at the left crack tip
will not significantly influence the stress and strain fields at the right crack tip. If the load calls a longer
contact zone at the left crack tip, then it can be taken into account by a simple transposition of the half-
spaces. The open part of the crack is thermally insulated, whereas ideal thermal contact takes place on the
other part of the interface, and the electrical potential is assumed to be continues across the whole interface.

Taking into account the last assumption and combining each group of Egs. (22) and (23) in the same
way as it has been performed by Herrmann and Loboda (2000) one arrives at the following presentations:

0% (x1,0) + imja(y (x1,0) = O,[F (x1) + 9,F (x)] + 00 — gy (x1),  (/=1,3) (28)

[t (x1)] + 18 [y (x1)] = " (x1) — F; (x1) (29)
where

Fi(z) = Wi(2) +1iS;W5(2),  goj(x1) = g3(x1) + im;g1 (x1) (30a)

833 +m;gi3 )
7= —(gn +mign)/v;, S = m’ vy =gn—mgn, j=1,3 (30b)
M= F 831833
811813

and

00 = —gud; ' (830 — gnd), A\ = g338u — 43834 (30c)

It follows from the first equation of (30a) that the functions F;(z) (j = 1, 3) under the boundary conditions
(14), are analytic in the whole plane with a cut along (—oo, 00) \ L. Besides, according to Herrmann and
Loboda (2000) the function W,(z) is analytic in the whole plane, and this function can be excluded from the
following consideration by means of incorporating the constant o, in Eq. (28).

Because of the linearity the formulated problem can be considered separately for an electromechanical
and a thermal loading, respectively. Taking into account that the problem in question under a pure elec-
tromechanical loading has been already studied in detail by Herrmann and Loboda (2000) in the following
thermal loading only will be considered assuming ¢ =t =0 =0 and d = DY = 0 for the time being.
Moreover, the solution of the obtained problem can be constructed as the sum of two parts—a state of
uniform heat flux gy and a perturbed temperature field caused by the insulated crack faces that tends to zero
at a large distance from the crack. Because the homogeneous temperature field is out of our interest we are
considering the perturbed state with the continuity and boundary conditions at the interface in the fol-
lowing form:

[T] =0, [g5]=0 forx €L, =(—00,00)\ (c,a) (31a)
45 =—q0 forx €L, (31b)
[V(x1,0)] =0, [t(x;,0)]=0 forx €L (32a)
oV (x1,0)=0, oW (x1,0)=0, [p(x1,0)]=0, [Ds(x;,0)]=0 forx; €L, (32b)

[LQ()C],O)] =0, [(P(xl ) O)] =0, 6(1?) (xlao) =0, [633()(170)] =0,
[D3(X1,0)} =0 for x| € L, (320)
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This problem is a particular case of the problem considered in the previous section forn =1, ¢; =d; =c,
a, = a, by = b and therefore the presentations (20a), (21a) and (22), (23) obtained there hold true in this
case.

Satisfying the boundary condition (31b) by using Eq. (21a) the following Hilbert problem arises

0" (x1) + 0" (x1) = — ‘Z—O for x; € Ly (33)
0
The solution of this problem disappearing at infinity can be presented in the form of Muskhelishvili (1977)
/1 i% XO (Z) / dr
0'(z) = —— 4
2 ky 2mi Jp, XF(6)(t—z2) (342)
with
Xo(2) = (z—¢) P z—a) " (34b)
Evaluation of the integral (34a) leads to the formula
vy _ o[/ cta B
0'(:) = 55, [(z : )Xo(z) 1} (35)
which gives after integration the following expression
0() =53 [VE—E—a)~7 (36)

where Z = z — ¢ and the integration constant ¢y = (¢ + a)/2 is introduced to satisfy the condition 6'(z) — 0
for z — oo.

By means of the obtained solution and the formulas (20a) and (21a) the temperature jump across the
material interface for ¢ < x; < a and the temperature flux for x; > a can be presented in the following form:

() =~ m—dwﬁm,@%mm=%< ( “m_@—Q (37)

X; —¢)

The last two expressions completely define the temperature jump and the heat flux in the bimaterial for any
position of point a.

5. On an admissible direction of the heat flux

For the case of isotropic materials the problem of a possible transition from a perfect thermal contact of
two isotropic bodies to their separation has been discussed in the paper by Martin-Moran et al. (1983)
where it was in particular indicated that such a possibility essentially depends on the material properties
and on the direction of the heat flux. To the authors knowledge a similar analysis has not been performed
yet neither for an anisotropic, nor for a piezoelectric bimaterial. Therefore to analyse the problem (31) and
(32) correctly let us consider now an auxiliary problem concerning a possible transition from a perfect
thermal contact of two piezoelectric bodies to their separation.

Consider the same piezoelectric half-spaces and the same loading as in Section 4 and assume that ¢ < 0
and t = 0, i.e. the half space are compressed to each other with a stress 0(3’;') = ¢ at infinity, and the thermal
and the electrical fluxes are prescribed at infinity as well. The contact between the half-spaces is assumed to
be frictionless and electrically permeable. A soft thermal insulator which does not call stresses is located in
the region |x;| <« of the interface and the remaining part of the interface is in a perfect thermal contact.
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Because the load does not depend on the coordinate x; the plane strain problem in the (x;, x3)-plane can be
considered and the interface conditions for the perturbed thermal and the associated mechanical problems
can be presented in the form

for u|<a: g¢i=qo, o2 (x1,0)=0, 0@ (x,0)=0, [p(x1,0)]=0, [Ds3(x;,0)]=0 (38)

for x| >a: [T]=0, [g5]=0, [u3(x1,0)] =0, [p(x1,0)]=0,
oV (x1,0) =0, [033(x1,0)] =0, [Ds(x1,0)] =0 (39)

Thus, we assume that in the interval |x;| < a a crack with thermally insulated and mechanically free surfaces
appears and that the other part of the material interface is in mechanically frictionless and thermally perfect
contact. The possibility of such a formulation, providing an electrically permeable interface exists for
|x1] < oo, is discussed in this paragraph.

Introducing the vectors S = [a%), (1], [@']]" and P = [[u}], agg),Dgl)]T the following relations can be found
by means of the formulas (22) and (23)

S(x1) =MW (x)) = MW (x;) + m*0" (x;) —m*0" (x)) (40)
P(x;) = NW'(x;) = NW (x;) +n*0" (x;) —n"0" (x) (41)
where the matrices M and N and the vectors m* and »* have the following structure
Gy Gi3 Gy 1 0 0 —h 0
M=| 0 1 0 [, N=|Gy Gy Gul|, m = 0 7, n"=4q —hs (42)
0 0 1 Gy Gy Gy 0 —hy

Further, by introducing a new vector-function ¥(z) = [¥,(2), ¥1(z), ¥3(z)]" by the following formula

T vy mt) e
one can get

S(x) = ‘l’+(x1) —¥ (x)) (44a)

P(x)) = Q‘I’*(xl) — G‘P‘(xl) — et (x1) + el (x1) (44b)

with Q = NM ! and e = Qm" — n*. It follows from the relation (44a) that under the boundary conditions
(39) the vector function ¥(z) is analytic in the whole plane with a cut along (|x;| < a,x; = 0).
The numerical analysis showed that for all analyzed combinations of materials the matrix Q is pure

imaginary and the vector e is real, and therefore Q = —Q, € = e. It means that the relation (44b) can be
written in the form
P(xi) = Q¥ (xi) + ¥ (x1)} — e{0" (x1) — 0" (x1)} (45)

Moreover, it follows from the relation (44a) and the equations 0(113) (x1,0) =0, [@(x1,0)] = 0 for |x;| < a that

the functions ¥(z) and ¥s(z) are analytic in the whole plane and by use of the conditions at infinity one
easily concludes that ¥,(z) = C; and ¥;(z) = C; (Cy, C; are arbitrary constants). The thermal solution in
this case can be presented by the formulas (35)-(37) with ¢ = —a and the remaining boundary condition
from Eq. (38) leads to the following equation

Pz(xl) =0 for ‘X1| <a (46)
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which involves the function ¥,(x;) only. Because the condition [i|(x)]|, ., = 0 is usually satisfied by
means of an appropriate prescription of the stresses a(l'f' = o at infinity one can choose the arbitrary

constant C; = 0. Then the condition at infinity can be written by means of Eq. (45) as follows

On Ol Pi2) o
2 _ 47
{sz Q33] { G |, .. d (47a)
and leads to the following formulas
¥(2)].—c = 0.5D5" (0330 — Ond) (47b)
C3 = —O.SDal(QnJ — szd) Wlth DO = Q22Q33 — Q23Q32 (47C)
By use of the formulas (36) and (45), Eq. (46) can be written in the form
pi P ) = —20 oo 2920 < 48:
3 () + P53 (x) ko Tm(0m) X} —a 0r C; for |x|<a (48a)

The solution of the Riemann problem (48) under the condition (47b) at infinity can be written in a form
similar to Eq. (34a) (see Muskhelishvili (1977) as well), which after an integration gives

e2q0 2az z—a o z 023
Yi(z) = — +\/zz—a21n—>+—7—2—c 48b
3(2) 2miko Im(Q)) (\/ZZ — a2 z+a On V2 —a O» ’ (48b)

The normal stress and the derivative of the normal displacement jump at the interface by use of the last
formula and Egs. (44a) and (45), read then as follows

e 2ax X|—a ox
o0 =5 (M eIt s e o
T — 1

[1y(x1)] = [Im(Qn)] " { a0 (— i+ @ —x3 InZ —x1> - } for x| <a (49b)

ko a*—x3 a+x a —x3

It is worth to note that neither the normal stress nor the derivative of the normal displacement jump depend
on the electrical flux d.

The formulas (49) are valid for any values of ¢, and o, respectively, and it can be clearly seen that
ag? (x1,0) and [u5(x;)] posses a square root singularity at the edges of the zone of thermal insulation.
However, the most important situation concerning the investigation of the contact zone model for an
interface crack is related to the case when the singularities in Eqgs. (49) are absent. This situation can

take place if the following relation between ¢y and ¢ is valid
2aesqq
_ 50
a e (50)

In this case the formulas (49) take the following form

e X1 —a
agg)(xl,()) = ;Tq;\/;%i—a;lnxj T for x; > a (51a)
/ —1€ a—Xx
W, (x1)] = [Im(O)] li_g\/ﬁmaﬂj for x| < a (51b)

Because the logarithmic functions in (51a) and in (51b) are negative for points x; situated in the vicinity of

point a and according to the numerical calculation the inequality Im(Q») > 0 is valid, it follows that
(1) , . C . . . .. . .

035 (x1,0) and [u}(x,)] are negative in the vicinity of point a (whereas [u3(x;)] is positive) if and only if
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exqo > 0 (52)

holds true. The last inequality defines the direction of the temperature flux ¢o for which a transition from a
perfect thermal contact of two piezoelectric bodies to their separation is possible. In spite of a particular
problem is considered in this paragraph, nevertheless the inequality (52) can be treated as a general con-
dition because the relations (51) define the asymptotic behavior of agg) (x1,0) and [u;(x1)], respectively, at
the transition point a.

In terms of the matrix G and the vector h from Eq. (27) the inequality (52) can be written in the following
form

gubs — g6,
I — 1]
g1

and for the case of two isotropic materials it is reduced to the well known inequality presented by Martin-
Moran et al. (1983)

(0 —6P)gp >0 (54)

where 8" and 6 are the distortivities of the upper and lower materials, respectively. If the inequality (52) is
not valid then the conditions (39) cannot be used and an imperfect thermal contact (Barber and Comninou,
1983) has to be considered. However, the consideration of an imperfect thermal contact is out of the subject
of the present paper.

>0 (53)

6. The classical interface crack model

Now we return to the consideration of the electromechanical characteristics of the problem (31) and (32).
However, for the sake of comparison the classical interface crack model should be considered briefly when
the crack is assumed to be completely opened, i.e. the contact zone L, disappears and the point a coincides
with b. It is worth to remind as well that the perturbed thermal problem with zero mechanical loading at
infinity is considered for the time being.

Satisfying the rest of the boundary conditions (32b) by means of Eq. (28) one arrives at the following
Hilbert problems

Ff(x) +v,F (1) = go;(x1)/9; for x € (¢,a), j=1,3 (55)

Because of the properties expressed by the formulas (30b) the problem (55) for j = 3 can be easily obtained
from the same problem for j = 1 and therefore the problem (55) can be considered for j = 1 only. Thus in
the following the index j will be dropped out and Eq. (55) can be written as

Ftn) +9F(x)) = k%% (x1) for x| € (c,a) (56a)

where according to Eq. (27) for the ceramics of the class 6mm holds true

(OF] (Xl) = im015c1 + 193 (Xl — C)(X1 — a), )~Cl = X1 — Cp (56b)
The solution of the problem (56a) can be presented in the form (Muskhelishvili, 1977)
_q0 X(2) @ (1) dt

F(z) = fod i X0 =2) + X(2)P(z) (57a)
where
X)) =(z—c) Pz —a) P (57b)

¢ =Iny/2n, P(z) = C1z+ Cy and C,, C, are arbitrary coefficients.
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Using the formula (A.7) with a = ¢, b = a and taking into account that for f(x;) = x; /X (x;) follows
k= —y and for f(x;) = /(x; —¢)(x; —a)/X"(x;) k =7 holds true the following expression for F(z) are
obtained

- i@lqo -
F(Z) 7](0’19(1 —i—'))) {Z X(Z)[d1122+d122+d13]}
0
k ﬁ(qu 7 {(VE=0)z—a) = X(@)dnZ + dnz + d]} + X (2)P(2) (58a)
where d]] = dz] = 1, d]z = d22 = —is(a — C) — (a + C),
diz = 0.25(a +¢)’ — 0.125(a — ¢)*(1 + 46?) 4 0.5ie(a> — ¢?), dos = dy3 — 0.125(a — ¢)° (58b)

The coefficients of P(z) should be determined by the condition at infinity and the condition of the single-
valuedness of the displacements which due to (29) can be written as

[ Fr ) - = 0 (59)

It follows from the absence of any loading at infinity that C; = 0. Using for the consideration of the
condition (59) the approach based upon the formulas (A.1)—(A.4) with F(z) instead of f(z) and noting that
the part F(z) without the term connected with P(z) tends to 0 for large |z| as O(z72) one can immediately
conclude that Cy = 0. The same result has been obtained by means of the direct consideration of Eqgs. (58)
and (59) (for ¢ = —a) and by using the integrals (A.9).

The stresses and the jump of the displacements can be found by means of the formulas (28) and (29).
Particularly for x; > a the stresses can be presented in the form

O'g;)(xl,()) + ima(113>(x1, ) 101 {xl (x1 [d“xl + d12x1 + d13]}

QO1+/

+ 03 { )C] — c)(x1 — a) —X(xl)[dmxf + d22X1 + dzﬂ} — go(xl)

(60)

The electrical flux in this region according to Herrmann and Loboda (2000) can be calculated directly via

o\ (x1,0) in the form

DY (x1,0) = g5 gus [0y (x1,0) + g5 (x1)] — ga(x1) (61)
Introducing similarly to Rice (1988) the stress intensity factors (SIFs) by the formula

Ki +imKy = (x; — a)*\/2n(x; — a)[o%y (x1,0) +ima'y (x1,0)], . (62)
and using Eq. (60) one arrives at the following expressions for the conjugating SIFs

. qo0 l\/_ _ . \2
Ky —imK, = 1 W1+ 2 - 63
| — 1mK; (+)k04f (1 +2ie)"(m, + n3) — 3 (63)
where
0 0
}11 = —ﬂ 3 = 31 (64)

y+ 17 1 y—1

Y =¢ln/ and / = b — ¢ is the crack length. The energy release rate (ERR) can by found by using the
formula (Herrmann and Loboda, 2000)
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G = Q(K}? + m’K3) (65)
with @ = —[29(1 + y)m] "
Particularly for a homogeneous piezoelectric material (y =1, ¢ =0, m = —1) is valid
Q! \/_
K = K
1=0, Ky= % 2 \/_ (66)

7. An artificial contact zone for an interface crack

If the position of the point @ does not coincide with b, then an artificial contact zone shown in Fig. 2 is
considered to exist now. The contact zone for an arbitrary position of the point a will be called an artificial
one. Further, a solution of the problem (31) and (32) for an interface crack with such a zone will be found,
and the real contact zone length will be derived from this solution.

Satisfying by means of Eq. (28) with oy = 0 the boundary conditions (32b) leads to Eq. (55) which for
j =1 can be written in the form (56a). The boundary conditions (32c) by using of Egs. (28) and (29) lead to
the following equations (the index j is dropped again on the same reason as earlier)

ImFi(xl) k 9 (pz(xl) for x; € L, (67&)
where
oax0) = 1 [ = Vo = el — )] (67b)

The relations (56) and (67) represent an inhomogeneous combined Dirichlet-Riemann boundary value
problem for the sectionally-holomorphic functions F(z). A solution of an associated homogeneous problem
with respect to Egs. (56) and (67) was found and applied to the analysis of a rigid stamp by Nahmein and
Nuller (1986), and concerning the problem of an interface crack this solution has been developed by
Loboda (1993) and Herrmann and Loboda (1999).

The general solution of the problem (56) and (67) can be presented in the form

F(z) = P(2)Xi(z) + Q(2)Xa(2) + Fo(2) (68)
where P(z) = Ciz+ C,, Q(z) = Dyz + D, are polynomials with arbitrary real coefficients,

)=ie?/\/(z—c)z—b) and Xi(z) =€/ \/(z—¢)(z — a) (69a)

are the partlcular solutions of a homogeneous problem correspondent to (56) and (67), with

(b—a)(z—c)
¢(z) =2¢ln 69b
@ Viz—a)++/(a—c)(z—b) (69b)
A particular solution Fy(z) of the inhomogeneous problem (56) and (67) is given in the Appendix B
according to

Fo(z) = ﬁXz( z)|w1(z) + w2 (2)] (70)
where w;(z), wy(z) are given by the formulas (B.3) and (B.7), respectively.

The form of the solution (68) and (70) is rather complicated and inconvenient for the determination of

the arbitrary coefficients and the following use of this solution. Therefore, the obtained solution should be




4204 K. P. Herrmann, V.V. Loboda | International Journal of Solids and Structures 40 (2003) 4191-4217

reduced to a more clear form. First of all it should be mentioned that the functions X, (z) (m = 1, 2) have
the following properties:

(i) they are analytic in the whole plane except the segment [c, b];
(i1) for the upper “+” and the lower “-" sides of [c, b] they have the following behavior

X, (x1) =X (x1) = =X, (x;) for x; € (c,a) (71a)
with
+eEPox1) etoox1)
Xli X)) = , X2i X)) = for x; a,b 71b
(x1) 0 (x1) TErEEr R € (a,b) (71b)
where
@o(x1) = 2¢tan™! M(%(xl) =ip(x;) for x; € (a,b)) (71c)

The most important part of the particular solution is the function w;(z). The integral in (B.3) defining this
function could not be evaluated in a closed form. But the most important imaginary part of w;(z) which is
used in the formula (B.5) has been managed to evaluate analytically in the following way.

We present the function w;(z) in the following way

1 (Z) = m01 @1 (Z) + 03¢2(Z) (723)
where

1 ird¢ \/tfc t—a)dt .
(pl(Z) 27171 /Ll t=t—2c¢p (72b)

“a ), G- PF r—z) ’

Using the properties (71b) of the function X;(z) it can be seen that the function S;(z) = e ) 4 ¢¢) is
analytic on the interval [a, b] and hence it is analytic in the whole plane except the segment [c,a]. Con-
sidering the Cauchy integral

Ql<z>—1/”’:v —IEm DO e iog (73)

2mi

where

z) =12\ (z—¢c)(z—a)Si(z) —cy?’ — - — o (74)
I' is a contour surrounding the segment [c, a] in a clockwise direction (Fig. 3), the point z remains outside of

this contour and c,, ..., co have the same sense as in formula (A.2). Further, letting the contour I" shrink
into the interval [c, a], by using that

Sy (f) = ye o) y7lelel) ol — (2036070 for ) € (c,a) (75)

Fig. 3. A contour I" surrounding the interval (c, a) of the jumps of the function S,(z) from the formula (73).
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holds true, one gets the following relation:

1 \/ t— t—
Im Q (x) _rt / c) @) cos ¢'( dt for x; & (c,a) (76)

t—x;

where
(b—a)(x; —c)
Vila—x)++/(a—c)(b—x)

On the other hand by using the second of the relations (75) in the first of the integrals (72b) leads to the
formula

©*(x1) = 2¢ln (77)

t\/(t—c)(t—
Im &, (x) = I \/—/ < t—xcll cos ¢’ dr forx, & (c,a) (78)
A comparison of the formulas (76) and (78) leads to the relation
1
Imo =—ImQ 79
m &, (x) G 1(x1) (79)

Using the expansion for large |z| of the function z,/(z — ¢)(z — a)S;(z) and the formulas (A.2) and (79) gives
the needed expression for Im @, (x;). Applying a similar approach for the second integral in (72b) and
combining the obtained results leads to the following expression for Imw, (x;) for x; & (c, a)

Imo (x) = —{\/m (1% + 137/ (r — ©)(x — )] cos (x) + dix® + dox + d3} (80a)
where

dy = —(m +n3)cos B, do = (m +13) [P, sin f + (a + c) cos fi],

(my +n5) { (72 = ac) cos B+ B, # sinﬁ} C = o cos B (80b)

with

ﬁzgln\ﬁi(b—zaa_)c), B =ev/la—c)(b—c) (80c)
Substituting (80a) into (B.5) leads to

HY(t) + H(¢) = 2{(n, + n3)(t — ¢)(t — a) cosh @, (t) + d\* + dot + d3} (81a)

H*(t) —H (t) =2n,{t\/(t = ¢)(t —a) — (t — ¢)(t — a) } sinh @ () (81b)

and the expression (B.7) attains a sufficiently clear form.

Moreover the determination of the arbitrary coefficients C;, C, and D;, D, from the formula (68) should
be considered. Because thermoelectrical and mechanical fields are absent at infinity it immediately follows
that C; = Dy = 0. The coefficients C,, D, can be found from the condition of the single-valuedness of the
displacements which due to (29) can be written in the form

[ FH ) = P =0 (82)

For a satisfaction of the condition (82) a way suggested in Appendix A by the formulas (A.1)-(A.4) will be
used. In this case the segment [c, b] should be used instead of [a, b], F(z) should be used as f(z) and c_; in
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this case is the coefficient before z~! in the expansion of F(z) at infinity. Taking into account that for large
2l

(t—z2)'=—z"'—z24+0@E), X(z) =iz e’ (z +1ip, —|—C—'2_b> +0(z7?)
X(z) =z%e¥ (z +ip + & i a) 4+ O(z?) holds true
it follows
. .qoR\
c. = <1C2 +D, + 1219)61‘ (83a)
where
1 [P H ) +H (¢
L [P HHH () (530)
2n Jo \J(t—a)(b—1)
is a real constant. Using the formulas (82) and (83a) and (A.4) lead to the results
Cy = —(kot)) 'qoR, Dy =0 (84)
Evaluating the integral connected with d;, d, d; in (83b) the expression for R can be presented in the form
b J—
R :@/ (t—c) ;ic;cosh(po(t)dt—&-Ro (85a)
where
2 2
Ry = (b—;a) +<b 8a) ]dl-l-b—;adz'i‘d,% (85b)

By using the obtained results the stresses and the jumps of the displacements can be calculated in accor-
dance with the formulas (28) and (29). Particularly for x; > b the formula for the stresses can be presented
in the form

9o eio(x) iR " Wy (xl) + 0)2()61)
k()\/xl —C \/xl —b VX1 —a
where for w;(x;) it is convenient to use the formula

‘ —¢)(a—te 0
w1<x1>:2n1\ﬁ/ o1 (V= )la—ne ™

t—Xx;

0'(313) (x1,0) + ima(lg) (x1,0) =1 +7y)

— go(x1) (86)

and the functions w;(x;), @(x;) and ¢*(¢) are real in the required intervals. For the determination of the
electric flux Dgl)(xl, 0) in the region x; > b the formula (61) with ag? (x1,0) defined by (86) can be used.

8. Stresses and electrical displacements at singular points
In this section the behavior of the stresses and the electrical displacements at the crack tip ¢ and at the

ends a, b of the artificial contact zone, respectively, should be considered. At the left crack tip ¢ an
oscillating singularity considered above takes place, and therefore no special attention to this point will be
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given. Further, it follows from the formula (86) that the normal stress is limited for x; — b + 0 and its value
in the point b + 0 read as follows

90 Rew;(x1) + wy(xy)

o (b+0.0) = (L) = =

—Regy(x) (87)

On the other hand the shear stress is singular for x; — b + 0 as well as the normal stress and the electrical
flux for x; — a + 0. The following IFs are introduced to characterize these singularities

k= limO\/2n(x1 - a)ag?(xl,O), ky = 111;10\/2n(x1 - b)a&?(xl,()) (88)
x]—b+

x)—a+
ky = limo 2m(x; — a)Dgl)(xl,O)
x]p—a+

Using for the determination of the SIF k; the formulas (28) and (68) and taking into account that X (x;),
go(x;) are limited for x; — a + 0 as well as Q(x;) = 0, e*™@ = y*05 are valid the following expression can
be found

2
ki = 2| ERe201(a +0) + 0 (a +0) + 3 (a +0)] (89)
Vs

Applying the Plemeli formula (Muskhelishvili, 1977) and by using (B.3), (B.7), (B.8) and (81) leads to the
following expression for the SIF

_ 90 | 2
k] = k—o n(a — C)(kll + k12) (903.)

where

ki = /a " /;__Ct[—m()]fsin @ (t) + 037/ (t — ¢)(a — t) cos @" (¢)] dt (90b)

t—c
t—a

ki = 2n1\/§/b [(t —c)—1t 1 sinh @, () d¢ (90c)

It follows from the formula (86) that

2n
kzZ*(1+V)n%OVTR e

The SIF of the normal stress k2 = lim,, ., o \/27(b — xl)ogll) (x1,0) at the point b can be presented by means
of the formulas (28) and (68) via the SIF %, in the form

y—1

kb = — k 92

1 my +1 2 ( )

and the intensity factor of the electrical flux (88); is defined completely by the SIF k; as it was already
shown by Herrmann and Loboda (2000)
y—1

ks = g3 |ga — (g3184 — g41g33)/27 ky (93)

It is clear from the last formulas that the SIFs £ and k, are completely defined by the SIFs &, and £,

respectively.
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The energy release rates G5, G5 related to the points a and b, respectively, according to Herrmann and
Loboda (2000) can be presented in the form

cosh® me k12> G — - m
2m(1 + )Y 2(1+y)0

For the following analysis it is convenient to introduce a parameter A = (b — @) /I defining a relative contact
zone length. For any value of /4 the SIFs k; and &, can be ecasily evaluated numerically from the formulas
(90) and (91), respectively. Some difficulties can arise only for small values of the parameter A when the
behavior of the integrand at the boundaries of integration in (90b) becomes rather complicated. This case is
very important because the real contact zone length is usually extremely small. Fortunately, for small values
of / the formulas (90) and (85a), (91) can be presented with high accuracy in a closed form.

In order to simplify (90b) this expression can be presented in the following form

G = — i (94)

kn =2n/yRew (a4 0) = ZHWRe{ % /c“ @(2) (tf_—xc)(t —a) cilB—o(0)] dl‘} » (95)
Taking into account that
e V(=) —a) + \/(a—c)(t —b)
b o) = e e Ve ovi—e (96a)

holds true and using for a small 1 the value (a — ¢) instead of (b — ¢) as well as the value (¢ — a) instead of
(t — b) in this formula the expression (96a) can be rewritten as

t—a
ﬁ—(p(t)Naln(t_c) (96b)
and one arrives at the following expression:
ki ~ 2my/Re|e PI(x) ] .. (97a)
with
L[ g (n)de
D=5 ¥ou-2 (970)

and X(z) defined by the formula (57b). An estimation of the performed simplification has been given
by Herrmann and Loboda (2001). The integral (97b) has already been evaluated by the formula (58a)
according to

(a—c)

I(a) =i 3 {(1 = 2ie)*(n, +n3) —m3} (98)

The SIFs ki, k, for a small A by assuming (a — ¢) = I, (b — a) = 0 can be presented in the form
. L - . IVl :
Vaky — imky ~ /oy — imky = —i(y + 1) L ﬁe‘ﬁl(l + 2ie)*(m, + 1) — 13 (99a)
ko 42
where
_ O+ 1)? _ 2
o= T cosh™(7e) (99b)

A numerical estimation had shown that these SIFs can be used with an admissible accuracy also for
moderate values of 4.
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Finally, we present the SIFs (88) for a pure electromechanical loading using the reference by Herrmann
and Loboda (2000)

VakT™ — imk{™ = \/g(l + 2ie)[V/1 — Ao cos f + mrsin f) + i(asin f — mzcos f)] (100)

which for small values of A take the form

Vak\™ — imk™ = | /%leiﬁ(l + 2ig)(o — im1) (101)

Superscript (em) is prescribed for the SIFs related to these loadings.
For the classical interface crack model the associated SIFs can be written as

: em I . . .
K™ —imk (™ = %e V(1 + 2ie)(0 — imn) (102)

and for a combination of electromechanical and thermal loading they must be found as a sum of the SIFs
(63) and (102) in the classical case and (99), (100) or (101) by using a contact zone model. It is worth to note
that the following relation between the SIFs of the classical and the contact zone (small 1) models is valid

(Ko + K™) — im(K, + KE™) = ¢ O [aly + R — im(F, + E)] (103)

and moreover, the SIFs in the case of electrically permeable crack faces do not depend on the electrical
flux d.

9. Contact zone model

The solution obtained in the Sections 7 and 8 is valid for any position of the point a. But this solution
becomes physically correct if the following additional conditions

ag? (x1,0) <0 for x; € Ly, [u3(x,0)] =0 forx €L (104)

are satisfied. In this case a real contact zone in the sense of Comninou (1977) takes place at the crack tip.
Assuming that the direction of the temperature flux satisfies the inequality (53) both inequalities (104)
are satisfied when

k4 k™ =0 (105)

holds true at point a. For a large contact zone length this equation consisting of the formulas (90) and (100)
can be solved numerically and a maximum root from the interval (0, 1) should be taken. For a small value
of 1 the associated equation by using of (101) and (102) can be written in the following form

Re{e(1 + 2ie)[l — imk — pi(m; + 2iemy)]} =0 (106a)
where
T 4¢? 2 + 4¢?
k:E’ m3 = m —mmb my = m —mmz
—m91 (‘)3
— _ , = 5 106b
T a1y T Gkeda(1—7) (106b)
The dimensionless parameter p in Eq. (106a) having the following form
v+ 1 qovd,!
_ v+ 1 g0 (107)

4 o
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defines the intensity of the temperature flux g, with respect to the tensile stress ¢ at infinity. The parameter
8, was chosen to be equal to 6, = 2/C222 (1 + (€l /c'?)), and it has the same dimension as the dis-
tortivity for an isotropic material.

Eq. (106a) can be rewritten in the following form

Re{e’ (1 + 2ie)(1 +ik*)} =0 (108a)
where the value
—mk — pms3

k=
1 + 2pemy

(108b)
can be treated as a coefficient of the shear-normal loading with taking into account the intensity of the
temperature flux. An exact solution of Eq. (108a) can be written in the form (Herrmann and Loboda, 1999)

. s 1 (1 —2ek)
A0~io—4exp{g[tan <W)+nn]} (109)

Here 4, J are the roots of Egs. (105) and (108), respectively, and # is an integer number which should be
used properly to define a maximum root in the interval (0, 1) of Eq. (108a).
In the paper by Rice (1988) the following equation

Re{Kr/(1 +2ig)} =0 (110)

has been suggested for the determination of the length r. of the interpenetration zone of the crack faces
predicted by the classical interface crack model. In spite of this equation has been suggested concerning
isotropic materials it can be used for the considered problem as well because according to the results of
Herrmann and Loboda (2000) the behavior of the displacement jumps at the crack tip of a permeable crack
for a piezoelectric bimaterial can be defined by same formula as for an isotropic one provided the complex
SIF is taken in the form

K =K —imKy + K™ — imK{™ (111)
Using the expressions (63) and (102), Eq. (110) can be written in the form

Re{e“(1 +ik")} =0 (112a)
with

¢ =c¢ln (%) and k" taken from Eq. (108b) (112b)

The solution of Eq. (112a) can be easily given in a form similar to (109) and, moreover, it can be found from
the comparison of Egs. (108a) and (112a) the relation between the real contact zone length Ay/ and the
length 7. of the interpenetration zone of the crack faces in the following form

Jol = dexp[—e ' tan~" (2¢)]r (113)

It is worth to remind that the relation (113) is valid for small values of (r.//) only.

The SIF kyy + k5" = (ky + k)|, ,, correspondent to a real contact zone length can be found by means
of the formulas (85), (91) and (100) in which 4 = 4, should be taken. For small values of 4, this SIF can be
found by means of the following formula

- I . .

ko + B = a\/zlm{e‘”o(l + 2ig) (1 + ik*)} (114a)
where

By = £1n(0.254) (114b)
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10. Result and discussions

The formulas (108b) and (109) show that for a certain bimaterial and small values of /, the contact zone
length is completely defined by the parameter £* only. The numerical analysis of several piezoelectric
bimaterials had shown that the parameters m; and m3 appeared to be always positive. Therefore, provided
the direction of the temperature flux satisfies the inequality (53) and t = 0 holds true, by applying a tension
¢ and gradually increase of the heat flux, the contact zone length will get larger for go¢ > 0 and smaller for
qo¢ < 0. For a general tension-shear-thermal loading the situation is more complicated and various cases
can arise. However, in the range of small 4, the increase of gy leads to a contact zone length defined by a
limited value of the parameter £* which is equal to

ms

K. = lim k*(go) = (115)

qo—00 2emy

It follows from Eq. (115) that for a small value of my a long contact zone can occur for a pure thermal
loading. However, in such cases a more correct verification of the contact zone length must be performed by
means of Eq. (105).

The numerical results were obtained for a bimaterial composed of piezoelectric cadmium selenium
(Ashida and Tauchert, 1997) (the upper material) and glass (the lower one). The characteristics of these
materials are presented in Appendix C (column l—the upper material, column 2—the lower material).
Because for these materials the value of (g1,0; — g3101)/g11 appears to be negative the direction of the
temperature flux gy according to the inequality (53) was chosen to be negative as well.

The variations of the value £* which can be considered as the coefficient of normal-shear-thermal loading
with respect to the intensity of the thermal flux p are shown in Fig. 4 for various coefficients of normal-shear
loading k. It can be seen that for £ =0 (r = 0) the k*-value increases with increasing intensity of the
temperature flux p. On the other hand for £ = 10 and k£ = 50 the k*-values decrease with increasing p.
However, in all three cases k* tends for p — —oo to the same value 0.810 which can be predicted by the
formula (115).

In Fig. 5 the variation of the relative contact zone length 4y with respect to the same parameters as in
Fig. 4 are shown. The values of 4y are usually extremely small, therefore, the logarithmic scale is used.

25
20 «\
15 ——k=0
X \\ —a—k=10
10 —Aa—k=50

Fig. 4. The variation of the coefficient of normal-shear-thermal loading with respect to the intensity of the thermal flux p for different
coefficients of normal-shear loading k.
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Fig. 5. The variation of the relative contact zone length 4, with respect to the intensity of the thermal flux p for different normal-shear
loading coefficients &.

However for £ = 50 and relatively small magnitudes of p the values of A, are comparable to 1. This special
case is demonstrated in the traditional scale in Fig. 6. For determination of 4, in Fig. 6, Eq. (105) has been
used, and the differences of the correspondent results and the asymptotic values obtained by the formula
(109) are shown in this figure. It is clear that for 4y > 0.05 this difference can be visualized, but for 4y < 0.05
it becomes negligible small and the formula (109) can be used for determination of 4. It should be noted
that for any value of k& the relative contact zone length 1y, for p — —oco tends to the same value
7.0225 x 107 as for a pure thermal loading.

Fig. 7 demonstrates the values of the SIF ky/(o+/1) correspondent to the same parameters as in the Figs.
4 and 5. The SIF ky grows with growing intensity of the heat flux, and of course its value essentially
depends on the value of the shear loading t defined by the parameter k.

0.25
0.2
4
0.15 ~
S —e—Eq. (105)
—a—Eq. (109)
0.1
0 T T T 1
0 5 10 15 20
Y

Fig. 6. The variation of the relative contact zone length 4, with respect to p for k£ = 50. Exact values obtained from Eq. (105) and
asymptotic values given by Eq. (109) are presented.
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Fig. 7. The variation of the stress intensity factor kyy with respect to the intensity of the thermal flux p for different normal-shear
loading coefficients £.

11. Conclusion

An interface crack between two semi-infinite piezoelectric spaces under the action of a combined
thermoelectromechanical loading has been considered. By using the extended Lekhnitskii—Eshelby—Stroh
representation developed for piezoelectric materials by Barnett and Lothe (1975) and Shen and Kuang
(1998) scalar and matrix—vector expressions for the temperature flux and the derivatives of the temperature
jump as well as for the stresses, electrical displacements and the derivatives of the mechanical displacement
and electrical potential jumps at the interface via sectionally-holomorphic functions have been presented.

Furthermore, an auxiliary problem concerning an admissible direction of the temperature flux has been
considered. It has been found that the inequality (52) defining the heat flux direction permits a transition
from a perfect thermal contact of two piezoelectric bodies to their mechanical and thermal separation. This
inequality can be treated as a generalization for piezoelectric bimaterials of the associated inequality pre-
sented for isotropic materials by Martin-Moran et al. (1983).

An open crack model is considered briefly and analytical expressions for the stresses, electrical flux,
stress intensity factors and the energy release rate corresponding to this model have been given by the
formulas (60)—(65).

The main attention in the paper has been devoted to the analysis of the contact of the interface crack
faces. Assuming an existence of an artificial contact zone at the right crack tip an inhomogeneous combined
Dirichlet-Riemann problem has been formulated. An exact analytical solution of this problem has been
presented in the form of Cauchy type integrals and the stress and electrical displacement intensity factors
have been expressed in the form of rather simple integrals (90) and (91). For a small contact zone length a
closed form asymptotic formula (99) has been derived for the mentioned intensity factors. Moreover, a
single analytical relation (103) between these intensity factors and the stress intensity factors of the classical
model has been obtained.

The real contact zone length in a Comninou sense has been derived as a particular case of the obtained
solution. Namely, a transcendental equation (105) for the determination of this length has been obtained.
The solution of this equation consisting of rather simple integrals can be found numerically for any relative
contact zone length 4y. However, for small Aq-values a closed form expression (109) has been found and 4y
has been written in a rather easier form (114) as well.

Moreover, an important parameter k* defined by formula (108b) has been found. This parameter can be
treated as a coefficient of the shear-normal loading by taking into account a temperature flux. By means of
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this parameter the relative contact zone length 4y and the associated stress intensity factor kyy can easily be
evaluated. Numerical results obtained both for small and long contact zone lengths, for different loading
coefficients and various intensities of the temperature flux show that depending on these parameters the
growth of the intensity of the temperature flux can lead both to an increase or a decrease of the contact zone
length and mostly to an increase of the associated stress intensity factor k.
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Appendix A. Some important formulas related to Cauchy integrals

The consideration of the problem of linear relationship leads to the following general formulas by
applying Cauchy integrals. Let a function f(z) be analytic in the whole plane with a cut along the segment
[a, D] of the axis x, and the boundary values of f from the lower and upper sides of [a, b] should be f*(x;)
and f~(x;). Consider the Cauchy integral

_ L [/©
9(2)—%/réﬁdé (A1)
where I' is a contour surrounding the segment [a, 5] in a clockwise direction, and assume that the point z
remains outside of this contour. Then according to the formula 70.3' of Muskhelishvili (1977) for any z
outside I" holds true

Q) =fle) = = —c (A2)
where f(z)|,_.. = e+ e+ caz ez
If the contour I shrinks into [a, b] it can be shown that
L [P 10—/ (1)
T A.
@ =5 [ O a3

The expansions of the left and right sides of (A.3) valid for large |z| read Muskhelishvili (1977)

Q) =cz ' +0(7?), ﬁ/ Ltz:f(’) dt:—z’lﬁ/ [ (6) = £~ (0)]dt + O(z?)

A comparison of the coefficients connected with the term z~! at the left and right sides of (A.2) leads to

b

/ [FH(6) — £~ (0] dt = —2nic, (A4)
This formula plays an important role concerning the consideration of the single-valuedness of the dis-
placements.

Further, let us consider the integral

L[
I(z) = — A.
) 2ni J, t—z dr (A-3)
by assuming that the boundary values of f are related to each other as follows

S ) =k (1) (A.6)
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Considering the integral (A.1) again and by shrinking the contour I' to [a, b] it follows that

1) = 1 06) = T ) e - —co) (A7)
The obtained formula is similar to the formula (110.40) of Muskhelishvili (1977), but it is related to a more
general class of functions than the associated formula just mentioned.

Important integrals can be evaluated on the base of formulas (A.5)—(A.7). Let for example a = —b and
f(2) = (z+b)"*"(z = b)""*7¥ 1In this case are k = —y~' and y = ¢*™. Taking into account that for large
2| f(z) = f>(2) =z + 2iebz % + (0.5 — 2&2)b*2> + -+, it valids I(z) = y(y + 1)"'f(z). An expansion of
the left and right sides of the last equation for large |z| by use of formula (A.5) can be written in the form

00 l b |
[ " ()dey =~ A8
S{emsm [ waf - (A)
A comparison of the coefficients connected with the term z=" (m = 1, 2, 3) at the left and right sides of (A.8)
and taking into account that coshne = (y +1)/(2,/7) leads to the following formulas
/” 1 b—t\ 'y _ T /” t (b—t\" b
D2\ b+t ~coshme’ ),/ \b+t ~ coshme’
/b P (b—t)“dtnb2(1—4sz)
VPR =2 \b+t a

2 cosh e

Appendix B. On a particular solution of an inhomogeneous Dirichlet-Riemann problem

Denoting by X,(z) a particular solution of a homogeneous problem associated with the problem (56) and
(67), Eq. (56) can be written as

Fr(xi) F (x1)  qo @(x1)

X)Xy () kv X5 (x))

for x; € L; (Bl)

A particular solution of Eq. (B.1) reads according to Muskhelishvili (1977) is the following
P _ a0

T = Lglor @) o) (B2)
where
o) = [ (B.3)

T2 )y, X (0 —2)

and w,(z) is an arbitrary function analytic on L,. Taking into account that X;"(x;) is real on L,, Eq. (67)
leads to

Ima)zi(xl) :Hi(xl) for x; € L, (B4)
where
+
+ @5 (x1)
= -1 B.5
H(x1) o () m o, (x;) (B.5)
Introducing a new function ws(z) = —iw,(z), Eq. (B.4) can be written as

Rew;y (x) = H (x;) forx €L, (B.6)
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By using a particular solution of the Dirichlet problem (B.6) presented by the formula (46.25) of the refe-
rence by Gakhov (1966) the function w,(z) can be written as follows

_Y(2) H(¢t) + H (1) 1 H*(t) —H (t)
©2(2) =5 L Y0 —2) ),  t-z dr (B7)
with
Y(z) =+ (z—a)(z—D) (B.8)

Further, by applying the formula (B.2) a particular solution of the inhomogeneous problem (56) and (67)
can be given in the form

Fy(e) = 1 5@ ) + o) (B.9)

Appendix C. Characteristics of the bimaterial

The upper material (Cad Se) The lower material (glass)
¢y x 1071 (N/m?) 7.41 5.88
¢33 x 1071 (N/m?) 8.36 5.88
c13 x 10719 (N/m?) 3.93 1.47
cas x 1071 (N/m?) 1.32 2.21
e3 (C/m?) -0.16 0.00
es (C/m?) —-0.138 0.00
ey (C/m?) 0.347 0.00
e x 101° (C/Vm) 0.825 0.885
e33 x 101° (C/Vm) 0.902 0.885
A (W/mK) 9.00 0.74
33 (W/mK) 9.00 0.74
By x 107¢ (N/m? K) 0.621 1.13
By x 107¢ (N/m? K) 0.551 1.13
By x 106 (C/m?K) -2.94 0.00
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